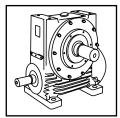
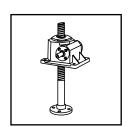
Tel. +41 (0)31 990 00 70 Fax +41 (0)31 990 00 71 e-mail info@varimax.ch web www.varimax.ch

Spindelhubgetriebe

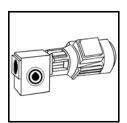
Serie BD

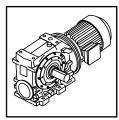


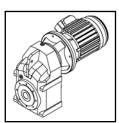
Technische Daten Bis max - 100Te / 5m/min

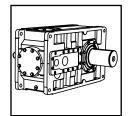

Spindelhubgetriebe CBD-2.00DE1211

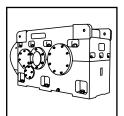
PRODUKTPALETTE

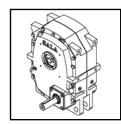

Wir liefern ein umfassendes Spektrum mechanischer Antriebe für die Lebensmittel-, Energie-, Bergbau und Metallindustrie bis hin zu Antrieben für die Automobilwirtschaft, Luft-/Raumfahrt und Seefahrt, und unterscheiden uns in positiver Hinsicht bei der Lieferung von Antriebslösungen.

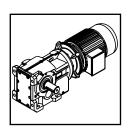

Serie A
Schneckengetriebe und
Getriebemotoren in Ausführungen
mit ein- und zweifacher
Untersetzung

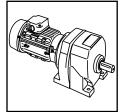

Serie BD Hubschneckengetriebe

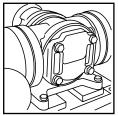

Serie BS Schneckengetriebe

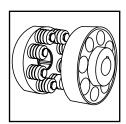

Serie CMotoren und Untersetzungen mit Kegelstirnrad-getriebe

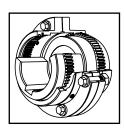

Serie FMotoren und Untersetzungen mit Stirnradgetriebe

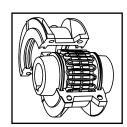

Serie GStirnrad- und Kegelstirnradgetriebe

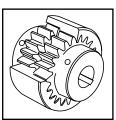

Serie H Große Stirnrad,- und Kegelstirnradgetriebe

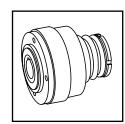

Serie JDrehzahlreduzierendes Aufsteckgetriebe


Serie K Motoren und Untersetzungen mit Kegelstirnradgetriebe


Serie MMotoren und Untersetzungen mit Inline-Stirnradgetriebe


Roloid Getriebepumpen Schmiermittel- und Flüssigkeits-förderpumpe


Serie XKegelring
ElastomerBolzenkupplung


Serie X Getriebe Verwindungssteife Kupplung für hohes Drehmoment

Serie X
Gitter
Doppelgelenkige
Gitterkupplung aus
Stahl

Serie XNylicon
Getriebekupplung mit
Nylonhülse

Serie XDrehmoment-begrenzer
Überlast- Schutzvorrichtung

Wir bieten einen umfassenden Reparaturservice und verfügen über langjährige Erfahrung in der Reparatur anspruchsvoller und hochkritischer Antriebe auf zahlreichen Industriezweigen

ATEX-Erfüllung gewährleistet

Vollständige Erfüllung der ATEX-Richtlinie durch Gewährleistung der Benutzung industrieller Anlagen in potentiell explosiver Umgebung für die Benutzer unserer Getriebe.

Ein Zertifikat ist verfügbar für Standardgetriebe und Getriebemotoren mit einer Etikette mit dem CE-Zeichen und der Ex-Markierung, Name und Ort des Herstellers, Baureihen- bzw. Typenbezeichnung Seriennummer, Herstellungsjahr, Ex-Symbol und Anlagengruppe/Kategorie.

Die ATEX-Richtlinie 94/9/EC (auch bekannt als ATEX 95 oder ATEX 100A) und die Richtlinie für das CE-Zeichen gelten in allen EU-Mitgliedsstaaten. Diese müssen von allen Konstrukteuren, Herstellern und Lieferanten von elektrischen und nicht elektrischen Anlagen zur Verwendung in potentiell explosiven Umgebungen, die durch die Anwesenheit entzündlicher Gase, Dämpfe, Nebel oder Staub verursacht wird, erfüllt werden.

Ex-erfüllende Standardgetriebe können für die Gruppen 2 bzw. 3 für Beschichtungsindustrien in den definierten Gefahrenbereichen 1 und 2 für Gase, Dämpfe und Nebel und in den Bereichen 21 und 22 für Stäube geliefert werden.

ANMERKUNGEN

INHALTSVERZEICHNIS

Einleitung	
Standardausführungen und Varianten	
Auswahlhilfe	
Typenbestimmung	
Auswahl der Hubgetriebe	
Beschreibung BD - BDL	
Technische Daten	
Nennleistungswerte BD - BDL	
Abmessungen BD - BDL	
Optionen	
Beschreibung BDK - BDKL	
Technische Daten BDK - BDKL	
Nennleistungswerte BDK - BDKL	
Abmessungen BDK - BDKL	
IEC-Motorflansch	-
Kardanwelle	
Kegelradgetriebe	
Teleskopfederschutz	
Montage- und Wartungsanweisungen	

EINLEITUNG

Unser Unternehmen ist auf dem Kraftübertragungsbereich tätig und verfügt über umfassende Erfahrung in der Herstellung und dem Vertrieb von MECHANISCHEN SCHNECKENHUBGETRIEBEN und kompletten Hubgetriebesystemen.

Mit diesem Katalog wird es Ihnen einfach gemacht, ein für Ihre Anwendung geeignetes Hubgetriebe bzw. Hubgetriebesystem auszuwählen. Sie können sich auch an unsere technische Vertriebsstelle oder Entwicklungsabteilung wenden. Sie unterstützen Sie mit Computerberechnungen und Empfehlungen für Standard- und Sonderanwendungen.

Als international agierendes Unternehmen sind wir in der Lage, Ihnen über unsere eigenen Niederlassungen und aktiven Vertreter optimale Lösungen auf lokaler Ebene zu bieten.

Auf der Rückseite dieser Veröffentlichung sind die Unternehmen aufgeführt, die auf Ihrem Markt tätig sind.

BD und BDL

Das mechanische Schneckenhubgetriebe mit Trapezgewindespindel ist mit verfahrender Hubspindel oder Spindelmutter lieferbar.

8 Standardgrößen

Kapazitäten bis 1000 kN (100 Tonnen)

1500 kN (150 Tonnen) auf Bestellung.

Hubgeschwindigkeit bis 2,4 m/Min (40 mm/s).

Zweifache Geschwindigkeit mit zweigängiger Hubspindel.

Standard-Hubspindellänge bis 4 m.

Größere Längen auf Bestellung.

Selbsthemmend unter den meisten vibrationslosen Betriebsbedingungen, weitere Informationen erhalten Sie von unseren Anwendungsingenieuren.

Kleinere Seitenlasten sind nur bei Typ BD zulässig, wenden Sie sich an unsere Anwendungsingenieure.

BDK und BDKL

Mechanisches Kugelumlaufspindel-Hubgetriebe lieferbar mit verfahrender Hubspindel oder Spindelmutter.

Kapazitäten bis 125 kN (12,5 Tonnen)

200 kN (20 Tonnen) mit Kugelumlaufspindel lieferbar auf Bestellung.

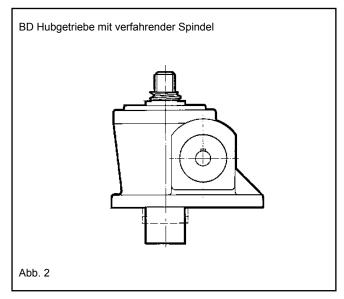
500 kN (50 Tonnen) mit Rollengewindetrieb lieferbar auf Bestellung.

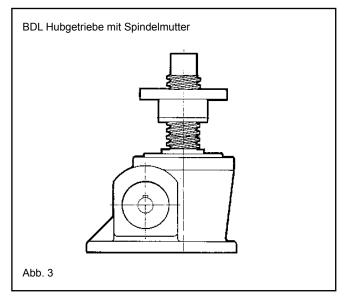
Hubgeschwindigkeit bis 5,4 m/Min (90 mm/s).

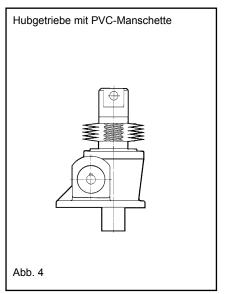
Größere Geschwindigkeiten auf Bestellung.

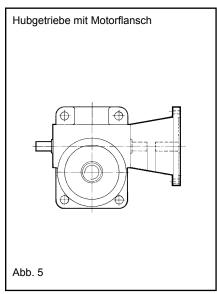
Standard-Hubspindellänge bis 5,5 m.

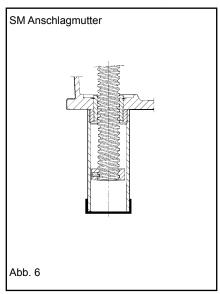
Nicht selbsthemmend, erfordert die Verbindung mit einem Bremssystem.

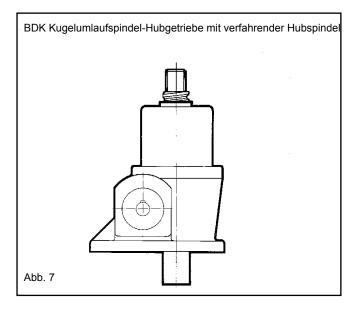

Spezialhubgetriebe BSD und BSDL 40-71

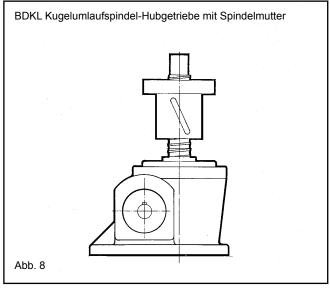

Die BS-Schneckengetriebegrößen 40 bis 71 können mit Trapezgewinde-Hubspindel oder Kugelumlaufspindel mit verfahrender Hubspindel bzw. Spindelmutter kombiniert werden.

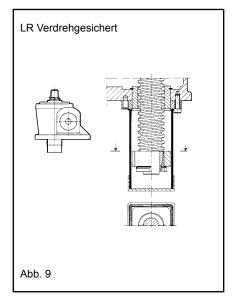

Kapazitäten bis 30 kN (3 Tonnen)

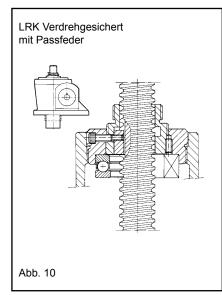

STANDARDAUSFÜHRUNGEN UND VARIANTEN

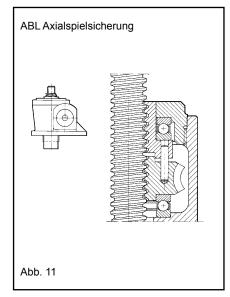

Standardausführungen

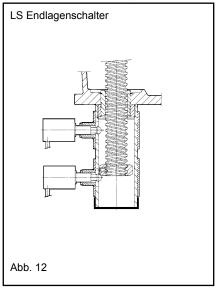


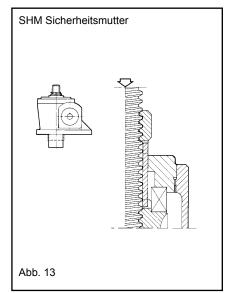


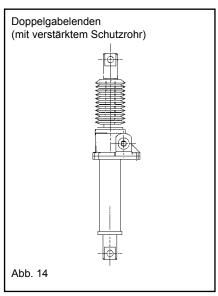

Varianten

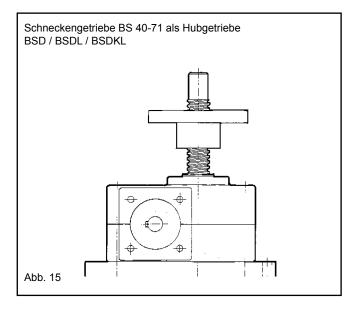


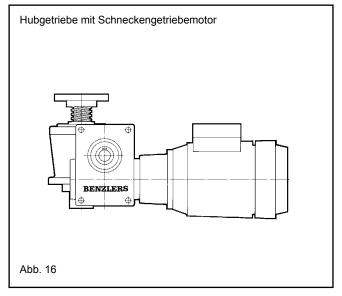



VARIANTEN UND SONDERAUSFÜHRUNGEN


Varianten







Sonderausführungen

AUSWAHLHILFE

AUSWAHLHILFE

Für die Anwendung von Schneckenhubgetrieben

Firmenname:

Anschrift:

Telefon/Fax:

Ansprechpartner:

Beschreibung der beabsichtigten Installation:

(Skizze wäre wünschenswert)

Anzahl der Hubgetriebe pro Installation:

AXIALBELASTUNG AUF HUBSPINDEL

Normale dynamische Last pro Hubgetriebe (kN):

Max. dynamische Last pro Hubgetriebe (kN):

Max. statische Last pro Hubgetriebe (kN):

Art der Last? (Zug/Schub/Schub und Zug):

Vibrationen? (ja/nein):

Stoßlasten? (ja/nein):

Seitliche Lasten? (ja/nein):

UMGEBUNG

Umgebungstemperatur (°C):

Einsatz im Freien?

Luftfeuchtigkeit:

Sauber/staubig/ölig/fettig/nass/korrosiv

Sonstige (bitte angeben):

ARBEITSZYKLUS

Zyklen / Stunde:

Stunden / Tag:

Tage / Jahr:

HUBSPINDEL

Axial verfahrende Spindel oder Mutter? (BD/BDL):

Hublänge (mm):

Hubgeschwindigkeit (mm/min):

Einbaulage der Gewindespindel (horizontal/nach oben/

umgekehrt):

Kugelumlaufspindel bevorzugt? (ja/nein):

Spindelende (Gewinde, Kopfplatte, Gabelkopf):

Schutzmanschette? (ja/nein):

Schutzrohr an Unterseite? (ja/nein):

Edelstahlmaterial:

OPTIONEN

SHM-Sicherheitsmutter, Sicherheitslastrichtung angeben:

Anschlagmutter SM:

Verdrehsicherung mit Rechteckrohr LR:

Verdrehsicherung mit einer Passfeder LRK:

Axialspielsicherung ABL:

Endlagenschalter, Anzahl angeben:

Edelstahl-Hubgetriebegehäuse:

Edelstahlschnecke:

Edelstahl-Endbeschläge:

MOTOREN

Motorflansch (Anz., rechte Seite, linke Seite):

Motordaten (Spannung, 50-60 Hz, Bremse

TYPENBESTIMMUNG

1. Typ BD = Hubgetriebe mit verfahrender Spindel

Typ BDL = Hubgetriebe mit Laufmutter

Typ BDK = Kugelumlaufspindel-Hubgetriebe mit verfahrender Spindel

Typ BDKL = Kugelumlaufspindel-Hubgetriebe mit Laufmutter

2. Größe = 27, 40, 58, 66, 86, 100, 125, 200

3. L = Niedrige Schneckengetriebeuntersetzung mit eingängiger Hubspindel

H = Hohe Schneckengetriebeuntersetzung mit eingängiger Hubspindel

L2 = Niedrige Schneckengetriebeuntersetzung mit zweigängiger Hubspindel

H2 = Hohe Schneckengetriebeuntersetzung mit zweigängiger Hubspindel

4. Richtung der Hubspindel

U = Aufrechtstehend

N = Hängend

5. Ausführung des Hubspindelkopfs

1 = Gewindekopf

2 = Kopfplatte

3 = Gabelkopf

4 = Sonderausführung (bitte angeben)

R1 = Edelstahl-Hubspindel mit Gewindekopf

R2 = Edelstahl-Hubspindel mit Kopfplatte

R3 = Edelstahl-Hubspindel mit Gabelkopf

6. Hub

= mm

7. Manschetten

B = PVC-Manschette

OB = Sonstige Manschetten, bei Bestellung bitte angeben

8. Optionen

SHM = Sicherheitsmutter, bitte Lastsicherheitsrichtung angeben

SM = Anschlagmutter

LR = Verdrehgesichert

LRK = Verdrehgesichert mit Passfeder

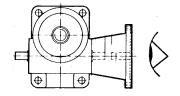
ABL = Spielsicherung

LS = 2 Endlagenschalter mit Anschlagmutter

9. Edelstahlausführungen

HR = Edelstahl-Getriebegehäuse

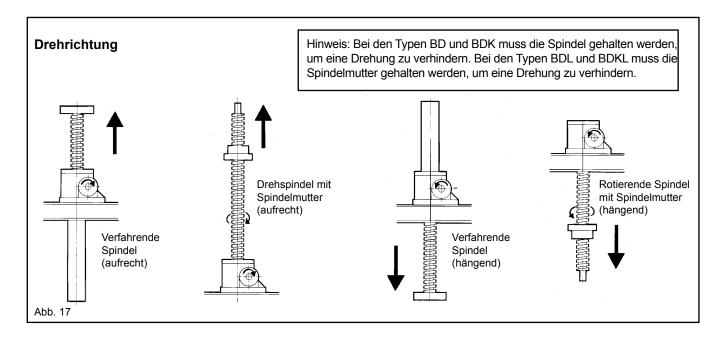
PR = Edelstahlschnecke


PH = Edelstahl-Getriebegehäuse und Edelstahlschnecke

10.Motorflansch

MCH = Motorflansch rechts*

MCV = Motorflansch links*


*Bitte Motorgröße und Flansch angeben

11. Motor-/Getriebeeinheit

Beispiel

I	1	2	3	4	5	6	7	8	9	10	11
	BD	58	L	U	1	250	В	ABL/SM	PH	МСН	71/B14
	Тур	Größe	Untersetzung	Richtung	Kopf- ausführung	Hub	Manschette	Zusätzliche Elemente	Edelstahl	Motorflansch	Motor

AUSWAHL DER HUBGETRIEBE

Verwendete Symbole:

F = Kraft (N) (1 Tonne = 10 000 N)

v = Hubgeschwindigkeit (mm/min)

s = Steigung der Hubspindel (mm)

n = Erforderliche Antriebsdrehzahl (U/min)

i = Untersetzung des Schneckengetriebes

ED = Taktfaktor (%)

P_d = Betriebsleistung des Hubgetriebes (kW)

P_s = Startleistung des Hubgetriebes (kW)

P_{ED} = Thermische Leistung (kW)

P_{Mnom} = Motornennleistung (kW)

P_{Mst} = Startleistung des Motors (kW) P_{Max} = Max. zulässige Antriebsleistung

P_{Max} = Max. zulässige Antriebsleistung des Hubgetriebes (kW)

η_d = Betriebswirkungsgrad des Hubgetriebes

η_s = Anlaufwirkungsgrad des Hubgetriebes

Zum Berechnen eines Hubgetriebes muss zumindest die zu bewegende Kraft (F) und Hubgeschwindigkeit (v) bekannt sein.

Man unterscheidet zwischen drei Typen von mechanischen Standard-Hubgetrieben.

I. BD/BDL

Hubgetriebe mit eingängiger Trapezspindel standardmäßig in 8 Größen. Hierbei handelt es sich um das am häufigsten verwendete Hubgetriebe; es ist für niedrige Hubgeschwindigkeiten (bis 2400 mm/ Min) geeignet und kostengünstig.

II. BD/BDL

Hubgetriebe mit zweigängiger Trapezspindel standardmäßig in 8 Größen.

Im Vergleich zu einer eingängigen Hubspindel können höhere Hubgeschwindigkeiten mit gesteigertem Wirkungsgrad erreicht werden. Das System muss über eine Bremse verfügen, weil die Hubgetriebe nicht selbsthemmend sind.

III. BDK/BDKL

Hubgetriebe mit Kugelumlauf-Hubspindel, als Varianten in 4 Größen lieferbar. Dieser Typ ist für hohe Hubgeschwindigkeiten geeignet. Aufgrund des höheren Gesamtwirkungsgrades ist es bei Anwendungen mit intensiverem Einsatz geeignet. (Hoher ED). Das System muss über eine Bremse verfügen, weil die Hubgetriebe nicht selbsthemmend sind

- Ein Hubgetriebe auswählen, wo die Nennkraft größer als die erforderliche Kraft ist. (Siehe "Technische Daten").
- Bei Kompressionslasten die Hublänge gemäß Euler I, II oder III auf Biegung überprüfen (siehe Kompressionslasttabellen).
- In den Nennleistungstabellen pr
 üfen, ob die max. zulässige Leistung bzw. Drehmoment überschritten wird.
- Auswahl eines Hubgetriebes
 Die Betriebsleistung (Pd) und
 Startleistung(Ps) berechnen. Pd
 wird in den Tabellen angegeben;
 siehe Anmerkung 3 oder wie folgt
 berechnen:

$$Pd = \frac{F \times V}{\eta d \times 6 \times 107}$$

$$Ps = \frac{F \times V}{\eta s \times 6 \times 107}$$

ηd = Betriebswirkungsgrad (siehe "Nennleistungstabellen")

ηs = Anlaufwirkungsgrad (siehe "Technische Daten")

5. Taktfaktor angeben ED in %/Stunde

Beispiel: 12 Min/Stunde = 20 %

- Bei einem anderen ED als 20 % auf Seite 23 bzw. 38 überprüfen, ob die thermische Leistung PED überschritten wird. Die Auswahl des Hubgetriebes ist korrekt, wenn
- P_{ED} > P_d (P_d siehe Anmerkung 4).
 Bei Auswahl des Hubgetriebetyps BDL und BDKL die kritische Spindelgeschwindigkeit überprüfen, siehe Seite 24 bzw. 38.
- Nur der Hubgetriebetyp BD erlaubt seitliche Belastungen (siehe Tabelle auf Seite 25).
- 9. Motorauswahl:
- I Folgendes überprüfen: Motornennleistung PMnom > Pd (Pd, siehe Anm. 4)
- II. Folgendes überprüfen: Startleistung des Motors PMst > Ps (Ps, siehe Anm. 4)

Zum Bestimmen der Startleistung des Motors wird in den meisten Fällen die folgende Formel angewendet:

$$P_{Mst} = \frac{Mst}{M} \times PM_{nom}$$

 $\frac{Mst}{M}$ = im Motorkatalog angegebener Faktor

Hinweis: Bei Dreiphasenmotoren ist der Faktor Mst normalerweise 1,8 - 2,5.

Weitere Informationen erhalten Sie bei unseren Anwendungsingenieuren. Erforderliche Antriebsdrehzahl berechnen

$$n = \frac{\overline{V \times i}}{s} (U/Min)$$

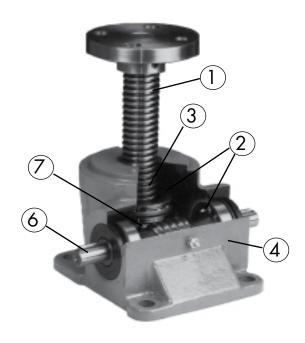
(i und s, siehe Technische Daten)

Berechnung einer Anordnung mit mehreren Hubgetrieben

Das Berechnen einer Anordnung mit mehreren Hubgetrieben wird nachstehend vereinfacht erläutert. Detaillierte Berechnungsinformationen erhalten Sie bei unseren Anwendungsingenieuren.

- Stromaufnahme der einzelnen Hubgetriebe in der Anordnung gemäß Punkt "4" für Einzelhubgetriebe berechnen.
- 2) Stromaufnahme der einzelnen Hubgetriebe addieren, um die Gesamtstromaufnahme Px zu erhalten.
- Besonders beachtet werden muss der Wirkungsgrad der Verbindungswelle und anderer Bauteile in der Anordnung wie z. B.: Schneckengetriebe, Kegelräder, Stirnräder, Kupplungen, Lager und eine normale Ausrichtungsabweichung bei Montage der Anordnung. Ist dies nicht möglich, den folgenden Anordnungswirkungsgrad verwenden:

Anzahl Hubgetriebe	ηarr
2 3 4 6-8	0,95 0,90 0,85 0,80


P_{arr} = Gesamtstromaufnahme der Anordnung

Px = Summe der Stromaufnahme der einzelnen Hubgetriebe

ηarr = Wirkungsgrad der Anordnung gemäß Tabelle

- Nach Berechnen der erforderlichen Konstruktionsmotorleistung sollte immer ein größerer Motor mit einer Sicherheitsspanne bei der Leistung gewählt werden.
- Bei hohen Hubgeschwindigkeiten und hoher Drehzahl an der Verbindungswelle muss das Trägheitsmoment berücksichtigt werden.

BESCHREIBUNG BD - BDL

- 1 Trapez-Hubspindel
- 2 Axial- und Radiallager
- 3. Fett mit EP-Qualität
- 4. Gehäuse aus Sphäroguss
- 5. Alkydharzlackierung Stärke 85 µm, Farbe RAL 5015
- 6. Gehärtete und geschliffene Schnecke
- 7. Schneckenrad aus Schleuderguss-Zinnbronze
- 8. Manschetten aus PVC, Stahl oder anderen Werkstoffen

Der zulässige Betriebstemperaturbereich mechanischer Hubgetriebe liegt zwischen -30 °C bis +100 °C. Unter Volllast darf der Einsatzgrad (ED) bei einer Umgebungstemperatur von + 25 °C normalerweise 40 % in 10 Minuten und 20 % pro Stunde insgesamt nicht überschreiten.

Bei anderen Bedingungen wenden Sie sich bitte an unsere Anwendungsingenieure.

Technische Daten, eingängige Spindel

Тур	27	40	58	66	86	100	125	200
Max. Kapazität N	10000	25000	50000	150000	200000	300000	500000	1000000
Hubspindel	Tr 20x4	Tr 30x6	Tr 40x7	Tr55x9	Tr 65x10	Tr 90x12	Tr120x14	Tr160x16
Untersetzung (L)	9:1	7:1	6.75:1	7:1	7:1	7:1	7.5:1	12:1
Hub pro Umdrehung (mm)	0.444	0.857	1.037	1.285	1.428	1.714	1.866	1.333
Anlaufmoment /Handaufzugmoment bei max. Last (Nm)	6	23	55	210	320	640	1280	2235
Max. Betriebsleistung bei 20 % ED (kW)	0.2	0.55	0.9	1.5	2.9	3.7	5.1	12.5
Anlaufwirkungsgrad η _s	0.12	0.15	0.14	0.14	0.14	0.12	0.11	0.09
Untersetzung (H)	27:1	30:1	27:1	28:1	28:1	28:1	30:1	36:1
Hub pro Umdrehung (mm)	0.148	0.200	0.259	0.321	0.357	0.428	0.466	0.444
Anlaufmoment /Handaufzugmoment bei max. Last (Nm)	5	10	32	115	160	320	640	1335
Max. Betriebsleistung bei 20 % ED (kW)	0.15	0.5	0.8	1.3	2.6	3.3	4.5	12
Anlaufwirkungsgrad η_{S}	0.05	0.08	0.06	0.06	0.07	0.06	0.05	0.05
Anlaufmoment an Hubspindel bei max. Last	21	77	199	810	1261	2548	5535	14425
Betriebswirkungsgrad η_d			Siehe I	Nennleistun	ngswerte BI	D - BDL		
Gewicht ohne Spindel und ohne Schutzrohr BD/BDL (kg)	2/2.4	7/8	14/16.5	22/25	41/49	73/85	134/162	450
Gewicht der Hubspindel 100 mm (kg)	0.2	0.45	0.82	1.6	2.2	4.4	7.9	14
Normales Axialspiel (mm)	0.1-0.25	0.1-0.30	0.1-0.30	0.1-0.35	0.1-0.40	0.1-0.40	0.1-0.40	0.1-0.45

(Spielsicherung, siehe Optionen)

TECHNISCHE DATEN

Technische Daten, zweigängige Spindel

GRÖSSE	27	40	58	66	86	100	125	200
Max. Kapazität N	8000	20000	40000	120000	160000	240000	400000	800000
Hubspindel	Tr 20x8	Tr 30x12	Tr 40x14	Tr55x18	Tr 65x20	Tr 90x24	Tr120x28	Tr160x32
Untersetzung (L)	9:1	7:1	6.75:1	7:1	7:1	7:1	7.5:1	12:1
Hub pro Umdrehung (mm)	0.888	1.714	2.074	2.571	2.857	3.428	3.733	2.667
Anlaufmoment /Handaufzugmoment bei max. Last (Nm)	6	23	55	210	320	640	1280	2120
Max. Betriebsleistung bei 20 % ED (kW)	0.25	0.7	1.1	1.9	3.6	4.7	6.4	16.0
Anlaufwirkungsgrad η _s	0.18	0.23	0.23	0.22	0.22	0.20	0.19	0.16
Untersetzung (H)	27:1	30:1	27:1	28:1	28:1	28:1	30:1	36:1
Hub pro Umdrehung (mm)	0.296	0.400	0.518	0.642	0.714	0.856	0.932	0.889
Anlaufmoment /Handaufzugmoment bei max. Last (Nm)	4.8	10.1	32.5	117	164	323	624	1265
Max. Betriebsleistung bei 20 % ED (kW)	0.20	0.60	1.0	1.6	3.2	4.1	5.6	15.0
Anlaufwirkungsgrad η _s	0.07	0.12	0.10	0.10	0.11	0.10	0.09	0.08
Anlaufmoment an Hubspindel bei max. Last	22	82	206	648	1276	2518	5358	13660
Betriebswirkungsgrad η _d			Siehe I	Nennleistun	gswerte BI) - BDL		
* Haltemoment Nm	0.35	1.8	5.5	16	24	44	80	115
Gewicht ohne Spindel und ohne Schutzrohr BD/BDL (kg)	2/2.4	7/8	14/16.5	22/25	41/49	73/85	134/162	450
Gewicht der Hubspindel 100 mm (kg)	0.2	0.45	0.82	1.6	2.2	4.4	7.9	14
Normales Axialspiel (mm)	0.1-0.25	0.1-0.30	0.1-0.30	0.1-0.35	0.1-0.40	0.1-0.40	0.1-0.40	0.1-0.45

^{*} Das Haltemoment entspricht dem erforderlichen Drehmoment an der Antriebswelle, damit die Last nicht abgesenkt wird.

Technische Daten, Statische Last

Max. zulässige statische Last (kN) (bei Spannungslasten an der Hubspindel)

Größe	27	40	58	66	86	100	125	200
Dynamische Kapazität	10	25	50	150	200	300	500	1000
BD, statisch	19,5	52,5	117,5	180	255	474	900	1320
BDL, statisch	17,5	41	88	180	240	300	500	1000

Die obigen Werte sind zulässig, wenn die Last still steht. In Bewegung oder bei Vibrationen gelten die dynamischen Werte. Bei allen Fällen mit Kompressionslast dürfen die Werte in der "Kompressionslasttabelle BD - BDL" nicht überschritten werden.

KOMPRESSIONSLASTTABELLE BD - BDL LASTFALL I

Тур			27	40	58	66	86	100	125	200
Max. Kapazität (kN)			10	25	50	150	200	300	500	1000
		0.2								
		0.3	5.4							
		0.4	(3.1)	15						
		0.5		9.5	36	139				
Max. Kapazität, Kompressionslast (kN)		0.6		(6.6)	25	96				
für unterschiedliche Hublängen bei dreifachem Bruch-Sicherheitsfaktor		0.7		(4.8)	18	71	147			
(Euler I)		0.8			14	54	112			
		0.9			(11)	43	89			
Freie Last		1.0			(8.9)	35	72	298		
Troic East		1.25				(22)	46	190		
		1.5					(32)	132	440	
		1.75						97	323	
		2.0						(74)	248	860
	(m)	2.25						(59)	196	680
	llänge	2.5							158	551
	pinde	2.75							(131)	455
	Freie Spindellänge (m)	3.0							(110)	382
	Ē	3.25							(94)	326
		3.5								281
		3.75								(245
		4.0								(215
		4.25								(191
		4.5								
		4.75								
Abb. 18		5.0								
		5.5								
		6.0								
		6.5								
		7.0								
		7.5								
	_									

Die Werte in Klammern dürfen nur bei niedriger Hubgeschwindigkeit und konzentrischer Last an den Hubspindeln angewendet werden.

KOMPRESSIONSLASTTABELLE BD - BDL LASTFALL II

Größe			27	40	58	66	86	100	125	200
Max. Kapazität (kN)			10	25	50	150	200	300	500	1000
		0.2								
		0.4								
		0.5	7.8							
		0.6	5.4							
Max. Kapazität, Kompressionslast (kN) für unterschiedliche Hublängen bei		0.7	4.0	19						
dreifachem Bruch-Sicherheitsfaktor (Euler II)		0.8	(3.1)	15						
		0.9	(2.4)	12	44					
Ostillada I ast		1.0		9.5	36	139				
Geführte Last		1.25		(6.1)	23	89	184			
		1.5			16	62	128			
₩		1.75			(12)	45	94			
Ø		2.0				35	72	298		
	(E)	2.25				27	57	235		
	llänge	2.5				(22)	46	190		
	pinde	2.75				(18)	(38)	157		
	Freie Spindellänge (m)	3.0					(32)	132	440	
	"	3.25					(27)	113	375	
		3.5						97	323	
		3.75						85	282	979
		4.0						(74)	248	860
		4.25						(66)	219	762
		4.5						(59)	196	680
		4.75							176	610
Abb. 19		5.0							158	551
		5.5							(131)	455
		6.0							(110)	382
		6.5							(94)	326
		7.0								281
		7.5								(245)
		8.0								(215)

Die Werte in Klammern dürfen nur bei niedriger Hubgeschwindigkeit und konzentrischer Last an den Hubspindeln angewendet werden.

KOMPRESSIONSLASTTABELLE BD - BDL LASTFALL III

Größe			27	40	58	66	86	100	125	200			
Max. Kapazität (kN)			10	25	50	150	200	300	500	1000			
		0.2											
Adam (Caracitat (Caracitatical et (IAI))		0.3											
Max. Kapazität, Kompressionslast (kN) für unterschiedliche Hublängen bei		0.4											
dreifachem Bruch-Sicherheitsfaktor (Euler III)		0.5											
		0.6											
0 474 4 0 : 4 4		0.7	8.0										
Gestützte Spindel		0.8	6.1										
					0.9	4.8	23						
				1.0	3.9	19							
		1.25	(2.5)	12	45								
L	Freie Spindellänge (m)	1.5		8.4	32	123							
		1.75		(6.2)	23	91	188						
		2.0		(4.7)	18	69	144						
		2.25			14	55	114						
		2.5			(11)	44	92						
	pinde	2.75			(9.4)	37	76						
	eie S	3.0				31	64	265					
	<u>r</u>	3.25				(26)	55	225					
Geführte Last		3.5				(23)	47	194					
\$6		3.75				(20)	(41)	169					
Ď		4.0				(17)	(36)	149	495				
		4.25					(32)	132	439				
		4.5					(28)	118	391				
		4.75					(25)	105	351				
		5.0						95	317				
		5.5						79	262	910			
		6.0						(66)	220	765			
		6.5						(56)	188	652			
		7.0							162	562			
	-	7.5							(141)	490			
		8.0							(124)	430			

Die Werte in Klammern dürfen nur bei niedriger Hubgeschwindigkeit und konzentrischer Last an den Hubspindeln angewendet werden.

Leistungsnennwerte für BD-BDL mit eingängiger Spindel bei 40 % ED/10 Min. oder max. 20 % ED/ Stunde bei Umgebungstemperatur +25° C.

n = Antriebsdrehzahl (U/min)

v = Hubgeschwindigkeit (mm/Min)

η_d = Betriebswirkungsgrad

L = niedrige Untersetzung

H = hohe Untersetzung

T = Antriebsmoment (Nm)

P = Antriebsleistung (kW)

i = Untersetzung des Schneckengetriebes

Hinweis: Nennleistungen entsprechen der Betriebsleistung. Beim Start ist zusätzliche Leistung erforderlich. Siehe "Auswahl der Hubgetriebe".

Mechanische und thermische Kapazitäten:

- A) Mechanische Kapazität = alle angegebenen Werte außer Leerfelder in den Tabellen.
- B) Mechanische Kapazität mit Edelstahlschnecke: (graue Felder in den Tabellen)
- C) Thermische Kapazität
 Die Daten oberhalb der Kursivzeile dürfen nur bei
 ED unter 20 % angewendet werden Die thermische
 Leistung muss überprüft werden. Siehe "Taktfaktor
 (ED) BD/BDL"

BD 27 L (i = 9) H (i = 27) TR 20 x 4 (eingängig)

n	\	/				10	kN			81	κN			6	κN			4	kN	
U/Min	mm	/Min	η	d	ΤL	P	TH	ΗP	Τl	P	ТН	ΗP	Τl	_ P	ТН	ΗP	Τι	- P	ТН	IP
	L	Н	L	Н	Nm	kW														
2900	1289	430	.31	.18	2.2	.68	1.3	.38	1.8	.56	1.1	.32	1.4	.44	.88	.26	1.0	.32	.66	.20
1750	778	259	.29	.16	2.4	.44	1.4	.25	2.0	.36	1.2	.21	1.5	.28	.94	.17	1.1	.20	.70	.13
1500	667	222	.28	.16	2.5	.39	1.4	.22	2.0	.32	1.2	.18	1.6	.25	.94	.15	1.1	.18	.70	.11
1000	444	148	.26	.15	2.7	.28	1.5	.16	2.2	.23	1.2	.13	1.7	.18	1.0	.11	1.2	.13	.74	.08
750	333	111	.25	.14	2.8	.22	1.6	.13	2.3	.18	1.3	.11	1.8	.14	1.1	.09	1.3	.10	.78	.06
500	222	74	.23	.13	3.0	.16	1.8	.09	2.4	.13	1.5	.07	1.9	.10	1.2	.06	1.3	.07	.86	.05
400	178	59	.22	.12	3.1	.13	1.9	.08	2.5	.11	1.6	.07	2.0	.08	1.2	.05	1.4	.06	.90	.05
300	133	44	.21	.11	3.2	.10	2.0	.06	2.6	.08	1.6	.05	2.0	.06	1.3	.05	1.4	.05	.94	.05
200	89	30	.20	.10	3.4	.07	2.2	.05	2.8	.06	1.8	.05	2.1	.05	1.4	.05	1.5	.05	1.0	.05
100	44	15	.18	.09	3.8	.05			3.1	.05	2.0	.05	2.4	.05	1.6	.05	1.7	.05	1.1	.05
50	22	7	.17	.08					3.3	.05	2.3	.05	2.6	.05	1.8	.05	1.8	.05	1.3	.05

n	\	/				2	kN		1 kN					
U/Min	mm	/Min	η	d	Τl	_P	ТН	ΗP	Τl	_ P	ТН	ΗP		
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW		
2900	1289	430	.31	.18	.63	.19	.45	.13	.44	.13	.35	.10		
1750	778	259	.29	.16	.67	.12	.47	.09	.46	.08	.36	.06		
1500	667	222	.28	.16	.69	.11	.47	.07	.47	.07	.36	.06		
1000	444	148	.26	.15	.73	.08	.49	.05	.49	.05	.37	.05		
750	333	111	.25	.14	.75	.06	.51	.05	.50	.05	.38	.05		
500	222	74	.23	.15	.79	.05	.55	.05	.52	.05	.40	.05		
400	178	59	.22	.12	.81	.05	.57	.05	.55	.05	.41	.05		
300	133	44	.21	.11	.85	.05	.59	.05	.54	.05	.42	.05		
200	89	30	.20	.10	.87	.05	.63	.05	.56	.05	.44	.05		
100	44	15	.18	.09	.95	.05	.69	.05	.60	.05	.47	.05		
50	22	7	.17	.08	1.0	.05	.75	.05	.63	.05	.50	.05		

BD 40 L (i = 7) H (i = 30) TR 30 x 6 (eingängig)

n	V	/				25	kN			20	kN			15	kN			10	kN	
U/Min	mm/	/Min	η	d	ΤL	_P	TH	ŀΡ	ΤL	_P	TH	ΗP	TL	_ P	TH	ΗP	TL	_ P	TH	1P
	L	Н	L	Н	Nm	kW														
2600	2229		.38		8.9	2.4			7.2	1.9			5.5	1.5				3.8	1.0	
1750	1500	350	.36	.22	9.4	1.7	3.5	.64	7.6	1.4	2.9	.52	5.8	1.0	2.2	.41	4.0	.72	1.6	.29
1500	1286	300	.35	.22	9.6	1.5	3.6	.56	7.7	1.2	2.9	.46	5.9	.92	2.3	.36	4.0	.63	1.6	.26
1000	857	200	.33	.20	10	1.1	3.9	.40	8.3	.89	3.2	.33	6.3	.67	2.5	.25	4.3	.46	1.8	.18
750	643	150	.31	.19	11	.84	4.1	.32	8.7	68	3.3	.26	6.6	.51	2.6	.20	4.5	.35	1.8	.14
500	429	100	.29	.18	12	.60	4.4	.23	9.3	.48	3.6	.19	7.0	.37	2.8	.15	4.8	.25	2.0	0.1
400	343	80	.28	.17	12	.50	4.6	.19	9.6	.40	3.7	.15	7.3	.31	2.9	.12	5.0	.21	2.0	.08
300	257	60	.27	.16	13	.39	4.8	.15	10	.31	3.9	.12	7.6	.24	3.0	.09	5.2	.16	2.1	.07
200	171	40	.25	.15	13	.28	5.2	.11	11	.23	4.2	.09	8.1	.17	3.3	.07	5.5	.12	2.3	.05
100	86	20	.23	.13	15	.15	5.8	.06	12	.12	4.7	.05	9.0	.09	3.6	.05	6.1	.06	2.5	.05
50	43	10	.21	.12	16	.08	6.5	.05	12	.06	5.3	.05	9.8	.05	4.0	.05	6.6	.05	2.8	.05

n	١ ١	/				7,5	kN			5 I	kΝ			2,5	kN	
U/Min	mm.	/Min	η	d	TL	_ P	TH	ΗP	Τl	_ P	TH	ΗP	Τl	_ P	TH	1P
	L	Н	L	Н	Nm	kW										
2600	2229		.38	.24	2.9	.79		2.1	.55			1.2	.32			
1750	1500	350	.36	.22	3.1	.55	1.3	.24	2.2	.39	.98	.18	1.2	.23	.66	.12
1500	1286	300	.35	.22	3.1	.49	1.3	.21	2.2	.34	1.0	.16	1.3	.20	.67	.10
1000	857	200	.33	.20	3.3	.36	1.4	.15	2.3	.25	1.1	.11	1.3	.14	.70	.07
750	643	150	.31	.19	3.5	.27	1.5	.11	2.4	.19	1.1	.09	1.4	.11	.72	.06
500	429	100	.29	.18	3.7	.19	1.6	.08	2.6	.13	1.2	.06	1.5	.08	.75	.05
400	343	80	.28	.17	3.8	.16	1.6	.07	2.7	.11	1.2	.05	1.5	.06	.77	.05
300	257	60	.27	.16	4.0	.12	1.7	.05	2.8	.09	1.2	.05	1.6	.05	.79	.05
200	171	40	25	.15	4.2	.09	1.8	.05	2.9	.06	1.3	.05	1.6	.05	.83	.05
100	86	20	.23	.13	4.7	.05	2.0	.05	3.2	.05	1.4	.05	1.8	.05	.89	.05
50	43	10	.21	.12	5.1	.05	2.2	.05	3.5	.05	1.6	.05	1.9	.05	.96	.05

BD 58 L (i = 6,75) H (i = 27) TR 40 x 7 (eingängig)

n	\	/				50	kN			40	kN			30	kN			25	kN	
U/Min	mm/	/Min	η	d	ΤL	- P	TH	ŀΡ	TL	_ P	TH	ŀΡ	TL	- P	TH	ŀΡ	TL	- P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW												
2000	2074		.36	.21								14		2.8			11	2.4		
1750	1815	454	.35	.22			9.0	1.7			7.3	1.4	14	2.5	5.6	1.1	12	2.1	4.8	.90
1500	1556	389	.35	.22			9.3	1.5			7.5	1.2	14	2.2	5.8	.93	12	1.8	4.9	.79
1000	1037	259	.33	.20			10	1.1	20	2.1	8.2	.89	15	1.6	6.3	.68	13	1.3	5.3	.58
750	778	194	.31	.19			11	.84	21	1.6	8.7	.68	16	1.2	6.6	.53	13	1.0	5.6	.44
500	519	130	.29	.17	28	1.5	12	.61	22	1.2	9.5	.49	17	.91	7.2	.38	14	.76	6.1	.32
400	415	104	.28	.16	29	1.2	12	.51	23	.96	9.9	.41	17	.73	7.5	.31	15	.61	6.4	.27
300	311	78	.27	.15	30	.95	13	.41	24	.76	11	.33	18	.58	8.0	.25	15	.48	6.8	.21
200	207	52	.25	.14	32	.67	14	.30	26	.54	11	.24	19	.41	8.7	.18	16	.34	7.4	.16
100	104	26	.23	.12	36	.37	16	.17	29	.30	13	.14	22	.22	10	.10	18	.19	8.4	.09
50	52	13	.21	.11	39	.21	19	.10	31	.17	15	.08	24	.13	11	.06	20	.11	9.5	.05

n	\	/				20	kN			15	kN			10	kN	
U/Min	mm/	/Min	η	d	ΤL	_P	TH	ΗP	Τl	_ P	TH	ΗP	TI	_ P	TH	1P
	L	Η	L	Η	Nm	kW										
2000	2074		.36	.21	9.2	1.9			7.0	1.5			4.8	1.0		
1750	1815	454	.35	.22	9.4	1.7	3.9	.74	7.2	1.3	3.1	.58	4.9	.90	2.2	.42
1500	1556	389	.35	.22	9.6	1.5	4.0	.65	7.3	1.1	3.2	.51	5.0	.79	2.3	.36
1000	1037	259	.33	.20	10	1.1	4.3	.47	7.7	.82	3.4	.37	5.3	.57	2.4	.26
750	778	194	.31	.19	11	.82	4.6	.36	8.1	.63	3.6	.28	5.6	.43	2.6	.20
500	519	130	.29	.17	11	.62	5.0	.26	8.6	.47	3.9	.20	5.9	.32	2.8	.14
400	415	104	.28	.16	12	.49	5.2	.22	9.0	.38	4.0	.17	6.2	.26	2.9	.12
300	311	78	.27	.15	12	.39	5.5	.17	9.4	.30	4.3	.13	6.4	.20	3.0	.09
200	207	52	.25	.14	13	27	6.0	.13	10	21	4.6	.10	6.8	.14	3.3	.07
100	104	26	.23	.12	15	.15	6.8	.07	11	.11	5.3	.05	7.6	.08	3.7	.05
50	52	13	.21	.11	16	.09	7.7	.05	12	.06	5.9	.05	8.3	.05	4.1	.05

BD 66 L (i = 7) H (i = 28) TR 55 x 9 (eingängig)

n	\	/				150	kN			125	kN			100	kN			75	kN	
U/Min	mm	/Min	η	d	ΤL	_P	l TH	ΗP	ΤL	. P	TH	ΗP	ΤL	_P	TH	ΗP	Τl	_ P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1750	2250	563	.36	.23															16	3.0
1500	1929	482	.35	.23															17	2.6
1000	1286	321	.33	.21															18	1.9
750	964	241	.32	.19													48	3.7	19	1.5
500	643	161	.31	.18											28	1.5	51	2.7	21	1.1
300	386	96	.27	.16									74	2.3	31	.98	56	1.7	24	.74
250	321	80	.26	.15									76	2.0	32	.85	57	1.5	24	.64
200	257	64	.25	.15									79	1.7	34	.71	60	1.3	26	.54
150	193	48	.24	.14					104	1.6	45	.71	83	1.3	36	.57	62	.96	27	.43
125	161	40	.23	.13					107	1.4	47	.61	85	1.1	37	.49	64	.84	28	.37
100	129	32	.23	.13	133	1.4			111	1.2	49	.51	89	.94	39	.41	67	.70	30	.31
50	64	16	.20	.11	146	.77	67	.35	122	.64	56	.29	98	.51	45	.23	73	.39	34	.18

n	\	/				50	kN			25	kN			20	kN			10	kN	
U/Min	mm/	/Min	η	d	TI	_ P	TH	ΗP	Tι	_ P	T H	ΗP	Tι	_ P	TH	ΗP	Τl	_ P	T H	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1750	2250	563	.36	.23	28	5.1	11	2.0	14	2.6	5.8	1.1	12	2.1	4.8	.88	6.1	1.1	2.7	.50
1500	1929	482	.35	.23	29	4.5	11	1.8	15	2.3	6.0	.93	12	1.9	4.9	.76	6.2	.98	2.7	.43
1000	1286	321	.33	.21	30	3.2	12	1.3	16	1.6	6.4	.68	13	1.3	5.3	.55	6.6	.69	2.9	.31
750	964	241	.32	.19	32	2.5	13	1.0	16	1.3	6.8	.53	13	1.0	5.6	.43	6.9	.54	3.1	.24
500	643	161	.31	.18	34	1.8	14	.77	17	.92	7.4	.40	14	.74	6.1	.33	7.3	.38	3.3	.17
300	386	96	.27	.16	37	1.2	16	.50	19	.59	8.3	.26	15	.48	6.7	.21	7.9	.25	3.7	.11
250	321	80	.26	.15	38	1.0	17	.43	20	.51	8.6	.22	16	.41	7.0	.18	8.2	.21	3.8	.10
200	257	64	.25	.15	40	.86	17	.36	20	.43	9.0	.19	16	.35	7.3	.15	8.5	.18	3.9	.08
150	193	48	.24	.14	42	.65	18	.29	21	.33	9.5	.15	17	.26	7.7	.12	8.8	.14	4.2	.07
125	161	40	.23	.13	43	.56	19	.25	22	.29	9.8	.13	18	.23	8.0	.10	9.1	.12	4.3	.06
100	129	32	.23	.13	45	.47	20	.21	23	.24	10	.11	18	.19	8.3	.09	9.4	.10	4.5	.05
50	64	16	.20	.11	49	.26	23	.12	25	.13	12	.06	20	.11	9.4	.05	10	.05	5.0	.05

BD 86 L (i = 7) H (i = 28) TR 65 x 10 (eingängig)

n	١ ١	/				200	kN			160	kN			120	kN			100	kN	
U/Min	mm/	/Min	η	d	TL	_P	TH	ΗP	TL	- P	T H	ΗP	TL	. P	TH	ΗP	Tι	_ P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	2143	536	.35	.23											29	4.5			24	3.8
1000	1429	357	.33	.22							41	4.3			31	3.2	67	7.0	26	2.7
750	1071	268	.32	.20							44	3.4	84	6.6	33	2.6	70	5.5	28	2.2
500	714	179	.30	.19							48	2.5	90	4.7	36	1.9	75	3.9	30	1.6
300	429	107	.27	.17			66	2.1	131	4.1	53	1.7	98	3.1	40	1.3	82	2.6	34	1.1
250	357	89	.26	.16			69	1.8	135	3.5	55	1.4	102	2.6	42	1.1	85	2.2	35	.91
200	286	71	.25	.15			72	1.5	141	2.9	58	1.2	106	2.2	44	.91	88	1.8	36	.76
150	214	54	.24	.14	184	2.9	76	1.2	147	2.3	61	.96	111	1.7	46	.73	92	1.5	39	.61
125	179	45	.23	.14	190	2.5	79	1.0	152	2.0	64	.80	114	1.5	48	.60	95	1.3	40	.51
100	143	36	.23	.13	197	2.1	83	.87	157	1.7	67	.70	118	1.3	50	.53	99	1.1	42	.44
50	71	18	.20	.12	218	1.1	94	.49	174	.88	76	.39	131	.66	57	.30	109	.55	48	.25

n	١	/				75	kN			50	kN			25	kN	
U/Min	mm/	/Min	η	d	ΤL	_P	l TH	ΗP	ΤL	_ P	T H	ΗP	Tι	_ P	TH	HP
	L	Н	L	Η	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	2143	536	.35	.23	47	7.5	18	2.9	32	5.0	12	2.0	16	2.6	6.7	1.0
1000	1429	357	.33	.22	50	5.3	20	2.1	34	3.5	13	1.4	17	1.8	7.2	.75
750	1071	268	.32	.20	53	4.2	21	1.6	36	2.8	14	1.1	18	1.4	7.6	.59
500	714	179	.30	.19	57	3.0	23	1.2	38	2.0	15	.81	19	1.0	8.2	.43
300	429	107	.27	.17	62	1.9	25	.80	42	1.3	17	.55	21	.66	9.0	.29
250	357	89	.26	.16	64	1.7	26	.69	43	1.1	18	.47	22	.57	9.3	.24
200	286	71	.25	.15	66	1.4	28	.57	44	.92	19	.39	23	.47	9.8	.20
150	214	54	.24	.14	70	1.1	29	.46	47	.74	20	.31	24	.37	10	.16
125	179	45	.23	.14	72	.94	30	.38	48	.63	20	.26	24	.32	11	.13
100	143	36	.23	.13	74	.79	32	.33	50	.53	21	.22	25	.27	11	.12
50	71	18	.20	.12	82	.42	36	.19	55	.28	24	.13	28	.14	13	.07

BD 100 L (i = 7) H (i = 28) TR 90 x 12 (eingängig)

n	'	/				300	kN			250	kN			200	kN			150	kN	
U/Min	mm	/Min	η	d	TL	- P	TH	ΗP	TL	- P	T H	ΗP	TL	. P	TH	ΗP	TL	- P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW												
1000	1714	429	.32	.21													125	13	49	5.1
750	1286	321	.31	.19											69	5.4	131	10	52	4.1
500	857	214	.29	.18									187	9.8	75	3.9	141	7.4	56	2.9
300	514	129	.26	.16									206	6.5	84	2.6	155	4.9	63	2.0
250	429	107	.25	.15					266	7.0	109	2.9	213	5.6	87	2.3	160	4.2	66	1.8
200	343	86	.24	.14					277	5.8	115	2.4	222	4.6	92	1.9	166	3.5	69	1.4
150	257	64	.23	.13	350	5.5			291	4.6	122	1.9	233	3.7	98	1.5	175	2.8	74	1.1
125	214	54	.22	.13	361	4.7			301	3.9	127	1.7	241	3.1	102	1.4	181	2.4	77	1.0
100	171	43	.21	.12	375	3.9			313	3.3	133	1.4	250	2.6	107	1.1	188	2.0	80	.84
50	86	21	.19	.11	420	2.2	183	.96	350	1.8	153	.80	280	1.5	122	.64	210	1.1	92	.48

n		/				100	kN			75	kN			50	kN	
U/Min	mm/	/Min	η	d	TL	. P	TH	ΗP	TL	_P	TH	ΗP	Τl	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	1714	429	.32	.21	84	8.7	33	3.4	63	6.6	25	2.6	42	4.4	17	1.8
750	1286	321	.31	.19	88	6.7	35	2.7	66	5.0	26	2.1	44	3.4	18	1.4
500	857	214	.29	.18	94	4.9	38	2.0	71	3.7	29	1.5	48	2.5	20	1.0
300	514	129	.26	.16	103	3.3	43	1.3	78	2.5	32	1.0	52	1.6	22	.67
250	429	107	.25	.15	107	2.8	44	1.2	80	2.1	33	.89	54	1.4	23	.60
200	343	86	.24	.14	111	2.3	47	.97	84	1.8	35	.74	56	1.2	24	.50
150	257	64	.23	.13	117	1.8	49	.77	88	1.4	37	.58	59	.93	25	.39
125	214	54	.22	.13	121	1.6	51	.69	91	1.2	39	.52	61	.79	26	.35
100	171	43	.21	.12	126	1.3	54	.57	95	.98	41	.43	63	.66	27	.29
50	86	21	.19	.11	141	.74	62	.32	106	.55	47	.24	71	.37	31	.16

BD 125 L (i = 7,5) H (i = 30) TR 120 x 14 (eingängig)

n	١	/				500	kN			400	kN			300	kN			250	kN	
U/Min	mm.	/Min	η	d	TL	_P	TH	ΗP	TL	_ P	T H	ΗP	TL	_P	TH	ΗP	TI	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	1867	467	.31	.20															91	9.6
750	1400	350	.29	.19											117	9.2	249	20.0	97	7.7
500	933	233	.27	.17									321	17	128	6.7	268	14.0	107	5.6
300	560	140	.25	.15									354	11	144	4.5	295	9.2	120	3.8
250	467	117	.24	.14									366	9.6	150	3.9	305	8.0	125	3.3
200	373	93	.23	.14					509	11			382	8.3	158	3.3	318	6.9	131	2.8
150	280	70	.22	.13					537	8.4	224	3.5	403	6.3	168	2.6	336	5.3	140	2.2
125	233	58	.21	.12					556	7.3	233	3.1	417	5.5	175	2.3	348	4.6	145	1.9
100	187	47	.20	.12	723	7.6			579	6.1	244	2.6	435	4.6	184	2.0	362	3.8	153	1.6
50	93	23	.18	.10	815	4.3			652	3.4	281	1.5	489	2.6	211	1.1	408	2.2	176	.94

n		/				200	kN			150	kN			100	kN	
U/Min	mm/	/Min	η	d	ΤL	_P	TH	ŀΡ	ΤL	_ P	TH	ŀΡ	ΤL	_P	TH	1P
	L	Η	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	1867	467	.31	.20	190	20	73	7.7	143	15	55	5.8	96	10	37	3.9
750	1400	350	.29	.19	200	16	78	6.2	150	12	59	4.7	101	8.1	40	3.1
500	933	233	.27	.17	215	11.0	86	4.5	161	8.5	65	3.4	108	5.7	44	2.3
300	560	140	.25	.15	236	7.3	96	3.0	177	5.5	73	2.3	119	3.7	49	1.5
250	467	117	.24	.14	244	6.4	100	2.6	184	4.8	76	2.0	123	3.2	51	1.3
200	373	93	.23	.14	265	5.5	105	2.2	192	4.1	79	1.7	128	2.8	53	1.1
150	280	70	.22	.13	269	4.2	112	1.8	202	3.2	85	1.3	135	2.1	57	.89
125	233	58	.21	.12	279	3.7	117	1.6	209	2.7	88	1.2	140	1.8	59	.79
100	187	47	.20	.12	290	3.0	123	1.3	218	2.3	92	.98	146	1.5	62	.66
50	93	23	.18	.10	327	1.7	141	.75	245	1.3	106	.57	164	.87	71	.38

BD 200 L (i = 12) H (i = 36) TR 160 x 16 (eingängig)

n	\	/				1.00	0 kN			800	kN			700	kN			600	kN	
U/Min	mm/	/Min	η	d	TL	. P	TH	ΗP	TL	. P	T H	ΗP	TL	_P	TH	ΗP	ΤL	_P	TH	HP
	L	Η	L	Η	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
850	1133	378	.26	.18							304	27	561	50	267	24	481	43	229	20
750	1000	333	.25	.18							313	25	574	45	274	22	493	39	255	19
500	667	222	.23	.16					708	37	342	18	620	32	300	16	532	28	258	14
300	400	133	.21	.14	978	31	480	15	783	25	384	12	686	22	337	11	588	19	289	9.0
250	333	111	.20	.14	1014	27	500	13	812	22	400	10	711	19	351	9.1	610	16	301	7.8
200	267	89	.20	.13	1060	22	525	11	848	18	421	8.8	743	15	368	7.7	637	13	316	6.6
150	200	67	.18	.12	1121	18	560	8.8	897	14	448	7.0	785	13	393	6.2	674	11	337	5.3
100	133	44	.17	.11	1210	13	611	6.4	969	10	489	5.1	848	9.1	428	4.5	727	7.8	368	3.9
50	67	22	.15	.10	1368	7.2	704	3.7	1095	5.8	563	3.0	958	5.0	493	2.6	822	4.3	423	2.2

n	_ \	V				500) kN			400	kN			300	kN			200	kN	
U/Min	mm.	/Min	η	ld	TI	_P	TH	ΗP	TI	_ P	T	ΗP	T I	_ P	T H	ΗP	T I	_ P	TH	HP
	L	H	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
850	1133	378	.26	18	402	36	191	17	322	29	154	14	242	22	116	10	163	14	78	7.0
750	1000	333	.25	.18	411	32	197	16	329	26	158	13	248	19	119	9.5	166	13	80	6.4
500	667	222	.23	.16	444	23	215	11	356	19	173	9.1	268	14	130	6.9	179	9.4	88	4.6
300	400	133	.21	.14	491	16	241	7.5	393	12	194	6.1	296	9.4	146	4.6	198	6.3	98	3.1
250	333	111	.20	.14	508	14	251	6.5	407	11	202	5.2	306	8.2	152	4.0	205	5.5	102	2.7
200	267	89	.20	.13	531	11	264	5.5	426	8.8	212	4.4	320	6.6	160	3.3	214	4.5	107	2.3
150	200	67	.18	.12	562	9.0	281	4.4	450	7.2	226	3.5	338	5.4	170	2.7	227	3.6	114	1.8
100	133	44	.17	.11	607	6.5	307	3.2	486	5.2	246	2.6	365	3.9	185	1.9	245	2.6	125	1.3
50	67	22	.15	.10	685	3.6	353	1.9	549	2.9	283	1.5	412	2.2	213	1.1	276	1.5	143	.75

Nennleistungswerte BD-BDL

Nennleistungswerte für BD-BDL mit zweigängiger Spindel bei 40 % ED/10 Min. oder max. 20 % ED/ Stunde bei Umgebungstemperatur +25° C.

- n = Antriebsdrehzahl (U/min)
- v = Hubgeschwindigkeit (mm/Min)
- η_d = Betriebswirkungsgrad
- L = niedrige Untersetzung
- H = hohe Untersetzung
- T = Antriebsmoment (Nm)
- P = Antriebsleistung (kW)
- i = Untersetzung des Schneckengetriebes

Hinweis: Nennleistungen entsprechen der Betriebsleistung. Beim Start ist zusätzliche Leistung erforderlich. Siehe "Auswahl der Hubgetriebe".

Mechanische und thermische Kapazitäten:

- A) Mechanische Kapazität = alle angegebenen Werte außer Leerfelder in den Tabellen.
- B) Mechanische Kapazität mit Edelstahlschnecke: (graue Felder in den Tabellen)
- C) Thermische Kapazität
 Die Daten oberhalb der Kursivzeile dürfen nur bei
 ED unter 20 % angewendet werden Die thermische
 Leistung muss überprüft werden. Siehe "Taktfaktor
 (ED) BD/BDL"

BD 27 L (i = 9) H (i = 27) TR 20 x 8 (zweigängig)

n	\					8	kΝ			6 I	κN			4	kN			2	κN	
U/Min	mm	/Min	η	d	Τl	_ P	TH	ΗP	ΤL	_P	TH	ΗP	TL	_P	l TH	ŀΡ	Tι	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW								
2900	2578	859	.41	.26			1.4	.43	2.0	.61	1.1	.34	1.4	.43	.82	.25	.83	.25	.53	.16
1750	1556	519	.40	.24	2.8	.51	1.5	.28	2.2	.39	1.2	.22	1.5	.28	.87	.16	.88	.16	.56	.10
1500	1333	444	.39	.23	2.8	.45	1.6	.25	2.2	.35	1.3	.20	1.5	.24	.92	.14	.88	.14	.58	.09
1000	889	296	.37	.22	3.0	.31	1.7	.18	2.3	.24	1.3	.14	1.6	.17	.97	.10	.93	.10	.61	.06
750	667	222	.36	.21	3.1	.25	1.8	.14	2.4	.19	1.4	.11	1.7	.13	1.0	0.8	.96	.08	.63	.05
500	444	148	.34	.19	3.3	.17	1.9	.10	2.5	.13	1.5	.08	1.8	.09	1.1	0.6	1.0	.05	.66	.05
400	356	119	.33	.18	3.4	.14	2.0	.08	2.6	.11	1.6	.06	1.8	.08	1.1	.05	1.0	.05	.68	.05
300	267	89	.31	.17	3.6	.11			2.8	.08	1.6	.05	1.9	.06	1.2	.05	1.1	.05	.71	.05
200	178	59	.30	.16	3.8	.08			2.9	.06	1.8	.05	2.0	.05	1.3	.05	1.1	.05	.76	.05
100	89	30	.27	.14					3.1	.05	2.0	.05	2.2	.05	1.4	.05	1.2	.05	.83	.05
50	44	15	.25	.12					3.4	.05	2.3	.05	2.3	.05	1.6	.05	1.3	.05	.93	.05

n	\	/				11	κN	
U/Min	mm	/Min	η	d	Τl	_ P	TH	ΗP
	L	Н	L	Н	Nm	kW	Nm	kW
2900	2578	859	.41	.26	.53	.16	.39	.12
1750	1556	519	.40	.24	.56	.10	.40	.07
1500	1333	444	.39	.23	.56	.09	.41	.06
1000	889	296	.37	.22	.59	.06	.42	.05
750	667	222	.36	.21	.60	.05	.44	.05
500	444	148	.34	.19	.62	.05	.45	.05
400	356	119	.33	.18	.64	.05	.46	.05
300	267	89	.31	.17	.66	.05	.47	.05
200	178	59	.30	.16	.69	.05	.50	.05
100	89	30	.27	.14	.72	.05	.54	.05
50	44	15	.25	.12	.76	.05	.59	.05

BD 40 L (i = 7) H (i = 30) TR 30 x 12 (zweigängig)

n	١ ١	/				20	kN			15	kN			10	kN			7,5	kN	
U/Min	mm.	/Min	η	d	TI	_ P	TH	ΗP	TL	_P	TH	ΗP	TL	_P	TH	ΗP	ΤL	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2600	4457	1040	.51	.34	11	2.9	3.7	1.0	8.1	2.2	2.9	.77	5.5	1.5	2.0	.55	4.2	1.1	1.6	.43
1750	3000	700	.48	.32	11	2.0	3.9	.72	8.4	1.5	3.0	.56	5.7	1.0	2.1	.39	4.4	.79	1.7	.31
1500	2571	600	.48	.31	11	1.8	4.0	.63	8.6	1.4	3.1	.49	5.9	.93	2.2	.34	4.5	.71	1.7	.27
1000	1714	400	.45	.29	12	1.3	4.3	.45	9.0	.98	3.3	.35	6.1	.67	2.3	.24	4.7	.51	1.8	.19
750	1286	300	.44	.28	12	.97	4.5	.35	9.4	.73	3.5	.27	6.4	.50	2.4	.19	4.9	.38	1.9	.15
500	857	200	.41	.26	13	.68	4.8	.25	9.9	.51	3.7	.19	6.7	.35	2.6	.13	5.1	.27	2.0	.11
400	686	160	.40	.25	14	.56	5.0	.21	10	.42	3.8	.16	6.9	.29	2.7	.11	5.3	.22	2.1	.09
300	514	120	.38	.24	14	.44	5.2	.16	11	.33	4.0	.12	7.2.	23	2.8	.09	5.5	.17	2.2	.07
200	343	80	.36	.22	15	.31	5.6	.12	11	.23	4.3	.09	7.6	.16	3.0	.06	5.8	.12	2.3	.05
100	171	40	.33	.20	16	.17	6.3	.07	12	.13	4.8	.05	8.2	.09	3.3	.05	6.3	.07	2.6	.05
50	86	20	.31	.18	17	.09	6.9	.05	13	.07	5.3	.05	8.9	.05	3.6	.05	6.7	.05	2.8	.05

n	'	,				5 1	κN			2,5	kN	
U/Min	mm	/Min	η	d	ΤL	_ P	TH	ΗP	ΤL	_P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2600	4457	1040	.51	.34	2.9	.80	1.2	.32	1.6	.44	.76	.21
1750	3000	700	.48	.32	3.0	.55	1.2	.23	1.7	.31	.79	.15
1500	2571	600	.48	.31	3.1	.49	1.3	.20	1.7	.27	.80	.13
1000	1714	400	.45	.29	3.2	.35	1.3	.14	1.8	.19	.84	.09
750	1286	300	.44	.28	3.4	.26	1.4	.11	1.9	.14	.86	.07
500	857	200	.41	.26	3.5	.18	1.5	.08	1.9	.10	.90	.05
400	686	160	.40	.25	3.6	.15	1.5	.06	2.0	.08	.93	.05
300	514	120	.38	.24	3.8	.12	1.6	.05	2.1	.06	.95	.05
200	343	80	.36	.22	4.0	.08	1.7	.05	2.2	.05	1.0	.05
100	171	40	.33	.20	4.3	.05	1.8	.05	2.3	.05	1.1	.05
50	86	20	.31	.18	4.6	.05	2.0	.05	2.5	.05	1.2	.05

BD 58 L (i = 6.75) H (i = 27) TR 40 x 14 (Zweigängig)

n	,	/				40	kN			30	kN			25	kN			20	kN	
U/min	mm	/min	η	d	Tι	_P	TH	ΗP	ΤL	_P	TH	ΗP	TI	_ P	TH	ΗP	TL	_ P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW												
2000	4148	1037	.50	.33	26	5.5	9.8	2.1	20	4.2	7.5	1.6	17	3.5	6.3	1.4	13	2.8	5.2	1.1
1750	3630	907	.49	.32	27	4.9	10	1.8	20	3.7	7.7	1.4	17	3.1	6.5	1.2	14	2.5	5.3	.95
1500	3111	778	.48	.31	27	4.2	10	1.6	20	3.2	7.9	1.2	17	2.7	6.6	1.0	14	2.1	5.4	.84
1000	2074	519	.46	.29	28	3.0	11	1.2	21	2.3	8.5	.91	18	1.9	7.1	.77	14	1.5	5.8	.63
750	1556	389	.44	.28	29	2.3	12	.92	22	1.7	8.9	.70	19	1.5	7.5	.59	15	1.2	6.1	.48
500	1037	259	.42	.26	31	1.6	13	.66	23	1.2	9.6	.50	20	1.0	8.1	.42	16	.81	6.6	.34
400	830	207	.41	.25	32	1.3	13	.55	24	.98	10	.42	20	.82	8.4	.35	16	.66	6.8	.29
300	622	156	.39	.23	33	1.0	14	.44	25	.75	11	.33	21	.63	8.9	.28	17	.51	7.2	.23
200	415	104	.37	.21	35	.74	15	.31	26	.56	11	.24	22	.47	9.6	.20	18	.38	7.8	.16
100	207	52	.34	.19	38	.40	17	.18	29	.30	13	.14	24	.25	11	.11	19	.20	8.8	.09
50	104	26	.31	.17	42	.22	19	.10	31	.17	15	.08	26	.14	12	.06	21	.11	10	.05

n	,	/				15	kN			10	kN	
U/min	mm.	/min	η	d	Τl	_ P	TH	ΗP	Τl	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2000	4148	1037	.50	.33	10	2.1	4.0	.86	6.9	1.5	2.8	.61
1750	3630	907	.49	.32	10	1.9	4.1	.73	7.0	1.3	2.9	.52
1500	3111	778	.48	.31	10	1.6	4.2	.65	7.1	1.1	3.0	.46
1000	2074	519	.46	.29	11	1.2	4.5	.48	7.5	.79	3.2	.34
750	1556	389	.44	.28	11	.89	4.7	.37	7.7	.61	3.3	.26
500	1037	259	.42	.26	12	.62	5.0	.26	8.1	.42	3.5	.19
400	830	207	.41	.25	12	.50	5.2	.22	8.4	.34	3.7	.15
300	622	156	.39	.23	13	.39	5.5	.18	8.7	.26	3.9	.12
200	415	104	.37	.21	13	.28	5.9	.12	9.2	.19	4.1	.09
100	207	52	.34	.19	15	.15	6.7	.07	10	.10	4.7	.05
50	104	26	.31	.17	16	.08	7.6	.05	11	.06	5.2	.05

BD 66 L (i = 7) H (i = 28) TR 55 x 18 (Zweigängig)

n	\ \ \	/				120	kN			100	kN			75	kN			50	kN	
U/min	mm	/min	η	d	TL	_P	TH	ΗP	TL	_P	TH	ΗP	ΤL	_P	TH	ΗP	ΤL	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1750	4500	1125	.50	.33													41	7.5	15	2.8
1500	3857	964	.49	.33													41	6.5	16	2.4
1000	2571	643	.47	.30													43	4.6	17	1.7
750	1929	482	.45	.29									67	5.3			45	3.5	18	1.4
500	1286	321	.43	.27									71	3.7	28	1.5	48	2.5	19	1.0
300	771	193	.40	.24									76	2.4	31	.98	51	1.6	21	.66
250	643	161	.39	.23					104	2.7			78	2.0	32	.84	52	1.4	22	.57
200	514	129	.38	.22					108	2.3			81	1.7	34	.70	54	1.2	23	.47
150	386	96	.36	.21					112	1.8			84	1.4	36	.56	56	.90	24	.38
125	321	80	.35	.20					115	1.5	49	.64	86	1.1	37	.48	58	.75	25	.32
100	257	64	.34	.20	142	1.5			118	1.3	51	.53	89	.94	38	.40	59	.63	26	.27
50	129	32	.31	.17	154	.81	69	.36	129	.68	58	.30	97	.51	43	.23	65	.34	29	.15

n	\	,				25	kN			20	kN			10	kN	
U/min	mm	/min	η	d	ΤL	_ P	TH	ΗP	Τl	_ P	TH	ΗP	Τl	_P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1750	4500	1125	.50	.33	21	3.8	7.9	1.5	17	3.1	6.4	1.2	8.6	1.6	3.5	.65
1500	3857	964	.49	.33	21	3.3	8.1	1.2	17	2.7	6.6	1.0	8.8	1.4	3.6	.56
1000	2571	643	.47	.30	22	2.3	8.6	.88	18	1.9	7.0	.72	9.2	.97	3.8	.39
750	1929	482	.45	.29	23	1.8	9.1	.72	18	1.4	7.4	.59	9.5	.75	4.0	.32
500	1286	321	.43	.27	24	1.3	9.8	.52	19	1.0	7.9	.42	10	.52	4.3	.23
300	771	193	.40	.24	26	.81	11	.34	21	.65	8.7	.28	11	.34	4.7	.15
250	643	161	.39	.23	27	.69	11	.29	21	.55	9.0	.24	11	.28	4.8	.13
200	514	129	.38	.22	27	.58	12	.24	22	.47	9.4	.20	11	.24	5.0	.10
150	386	96	.36	.21	28	.46	12	.19	23	.37	9.9	.16	12	.19	5.3	.08
125	321	80	.35	.20	29	.38	13	.17	23	.31	10	.13	12	.16	5.4	.07
100	257	64	.34	.20	30	.32	13	.14	24	.26	11	.11	12	.13	5.7	.06
50	129	32	.31	.17	33	.17	15	.08	26	.14	12	.06	13	.07	6.3	.05

BD 86 L (i = 7) H (i = 28) TR 65 x 20 (Zweigängig)

n	\					160	kN			120	kN			100	kN			75	kN	
U/min	mm	/min	η	d	Τl	_ P	TH	ΗP	ΤL	_P	TH	ΗP	Tι	_P	l TH	ŀΡ	TL	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW								
2900	2578	859	.41	.26			1.4	.43	2.0	.61	1.1	.34	1.4	.43	.82	.25	.83	.25	.53	.16
1750	1556	519	.40	.24	2.8	.51	1.5	.28	2.2	.39	1.2	.22	1.5	.28	.87	.16	.88	.16	.56	.10
1500	1333	444	.39	.23	2.8	.45	1.6	.25	2.2	.35	1.3	.20	1.5	.24	.92	.14	.88	.14	.58	.09
1000	889	296	.37	.22	3.0	.31	1.7	.18	2.3	.24	1.3	.14	1.6	.17	.97	.10	.93	.10	.61	.06
750	667	222	.36	.21	3.1	.25	1.8	.14	2.4	.19	1.4	.11	1.7	.13	1.0	0.8	.96	.08	.63	.05
500	444	148	.34	.19	3.3	.17	1.9	.10	2.5	.13	1.5	.08	1.8	.09	1.1	0.6	1.0	.05	.66	.05
400	356	119	.33	.18	3.4	.14	2.0	.08	2.6	.11	1.6	.06	1.8	.08	1.1	.05	1.0	.05	.68	.05
300	267	89	.31	.17	3.6	.11			2.8	.08	1.6	.05	1.9	.06	1.2	.05	1.1	.05	.71	.05
200	178	59	.30	.16	3.8	.08			2.9	.06	1.8	.05	2.0	.05	1.3	.05	1.1	.05	.76	.05
100	89	30	.27	.14					3.1	.05	2.0	.05	2.2	.05	1.4	.05	1.2	.05	.83	.05
50	44	15	.25	.12					3.4	.05	2.3	.05	2.3	.05	1.6	.05	1.3	.05	.93	.05

n	\	,				50	kN			25	kN	
U/min	mm	/min	η	d	ĮΤL	_ P	T H	ΗP	ŢΙ	_ P	TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2000	4148	1037	.50	.33	10	2.1	4.0	.86	6.9	1.5	2.8	.61
1750	3630	907	.49	.32	10	1.9	4.1	.73	7.0	1.3	2.9	.52
1500	3111	778	.48	.31	10	1.6	4.2	.65	7.1	1.1	3.0	.46
1000	2074	519	.46	.29	11	1.2	4.5	.48	7.5	.79	3.2	.34
750	1556	389	.44	.28	11	.89	4.7	.37	7.7	.61	3.3	.26
500	1037	259	.42	.26	12	.62	5.0	.26	8.1	.42	3.5	.19
400	830	207	.41	.25	12	.50	5.2	.22	8.4	.34	3.7	.15
300	622	156	.39	.23	13	.39	5.5	.18	8.7	.26	3.9	.12
200	415	104	.37	.21	13	.28	5.9	.12	9.2	.19	4.1	.09
100	207	52	.34	.19	15	.15	6.7	.07	10	.10	4.7	.05
50	104	26	.31	.17	16	.08	7.6	.05	11	.06	5.2	.05

BD 100 L (i = 7) H (i = 28) TR 90 x 24 (Zweigängig)

n	\ \	/				240	kN			200	kN			150	kN			100	kN	
U/min	mm/	/min	η	d	TL	_P	TH	ΗP	TI	_ P	T H	ΗP	TL	_ P	T⊦	ŀΡ	TL	_ P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW												
1000	3429	857	.46	.31													118	12	43	4.6
750	2571	643	.44	.30									183	14	68	5.4	122	9.4	46	3.6
500	1714	429	.42	.27									193	10	74	3.9	129	6.7	49	2.6
300	1029	257	.39	.25					277	8.7			208	6.5	82	2.6	139	4.4	55	1.7
250	857	214	.38	.24					285	7.5			214	5.6	85	2.2	143	3.8	57	1.5
200	686	171	.37	.23					294	6.2	118	2.5	221	4.7	89	1.9	148	3.1	59	1.3
150	514	129	.35	.21	369	5.8			307	4.8	125	2.0	231	3.6	94	1.5	154	2.4	63	1.0
125	429	107	.34	.21	379	5.0			316	4.2	129	1.7	237	3.1	97	1.3	158	2.1	65	.86
100	343	86	.33	.20	391	4.1			326	3.4	135	1.4	245	2.6	102	1.1	164	1.7	68	.71
50	171	43	.30	.17	431	2.3	184	.96	359	1.9	154	.80	270	1.4	115	.60	180	.96	77	.40

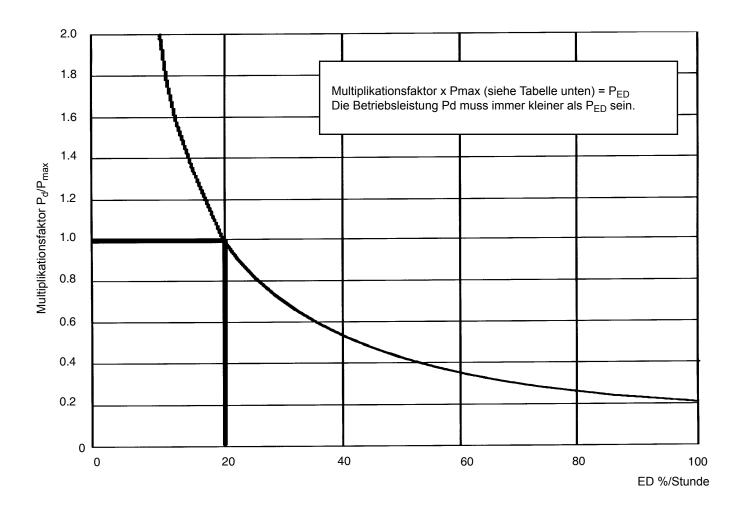
n	\	,				75	kN			50	kN	
U/min	mm	/min	η	d	ΤL	_P	TH	ΗP	ΤL	_P	TH	HP
	L	Η	L	Η	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	3429	857	.46	.31	89	9.0	33	3.5	59	6.1	22	2.4
750	2571	643	.44	.30	92	7.0	35	2.7	62	4.7	23	1.9
500	1714	429	.42	.27	97	5.0	37	2.0	65	3.4	25	1.3
300	1029	257	.39	.25	105	3.3	41	1.3	70	2.2	28	8.9
250	857	214	.38	.24	107	2.8	43	1.1	72	1.9	29	.75
200	686	171	.37	.23	111	2.3	45	.95	74	1.6	30	.64
150	514	129	.35	.21	116	1.8	47	.76	78	1.2	32	.51
125	429	107	.34	.21	119	1.6	49	.65	80	1.1	33	.44
100	343	86	.33	.20	123	1.3	51	.53	82	.86	35	.36
50	171	43	.30	.17	135	.72	58	.30	91	.48	39	.20

BD 125 L (i = 7.5) H (i = 30) TR 120 x 28 (Zweigängig)

n	\					400	kN			300	kN			250	kN			200	kN	
U/min	mm	/min	η	d	TL	- P	TH	ΗP	TL	- P	T H	ΗP	TL	. P	TH	ΗP	TL	. P	TH	HP
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	3733	933	.45	.30													264	28	96	10
750	2800	700	.43	.29									342	27			274	22	102	8.0
500	1867	467	.41	.27									362	19	137	7.2	290	15	110	5.8
300	1120	280	.38	.24					469	15			391	13	152	4.8	313	10	122	3.8
250	933	233	.36	.23					482	13			402	11	158	4.1	322	8.7	127	3.3
200	747	187	.35	.22					499	11	198	4.2	416	9.2	165	3.5	333	7.3	133	2.8
150	560	140	.34	.21					522	8.2	210	3.3	436	6.8	175	2.8	349	5.5	141	2.2
125	467	117	.33	.20					538	7.0	218	2.8	448	5.8	182	2.3	359	4.7	146	1.9
100	373	93	.32	.19	741	7.8			556	5.9	228	2.4	464	4.9	190	2.0	371	3.9	153	1.6
50	187	47	.28	.17	821	4.3			616	3.2	261	1.4	514	2.7	216	1.2	411	2.2	174	.94

n	١ ١	/		ηd		150	kN			100	kN	
U/min	mm/	/min	η	ld	TL	_ P	l TH	ΗP	T L	_P	T H	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1000	3733	933	.45	.30	198	21	73	7.5	133	144	9	5.1
750	2800	700	.43	.29	206	16	77	6.0	138	11	52	4.1
500	1867	467	.41	.27	218	11	83	4.4	146	7.6	56	2.9
300	1120	280	.38	.24	235	7.5	92	2.9	157	5.0	62	1.9
250	933	233	.36	.23	242	6.5	95	2.5	162	4.4	64	1.7
200	747	187	.35	.22	250	5.5	100	2.1	167	3.7	67	1.4
150	560	140	.34	.21	262	4.1	106	1.7	175	2.7	71	1.1
125	467	117	.33	.20	270	3.5	110	1.4	180	2.3	74	.95
100	373	93	.32	.19	279	2.9	115	1.2	186	2.0	77	.81
50	187	47	.28	.17	309	1.6	131	.70	206	1.1	88	.47

BD 200 L (i = 12) H (i = 36) TR 160 x 32 (Zweigängig)

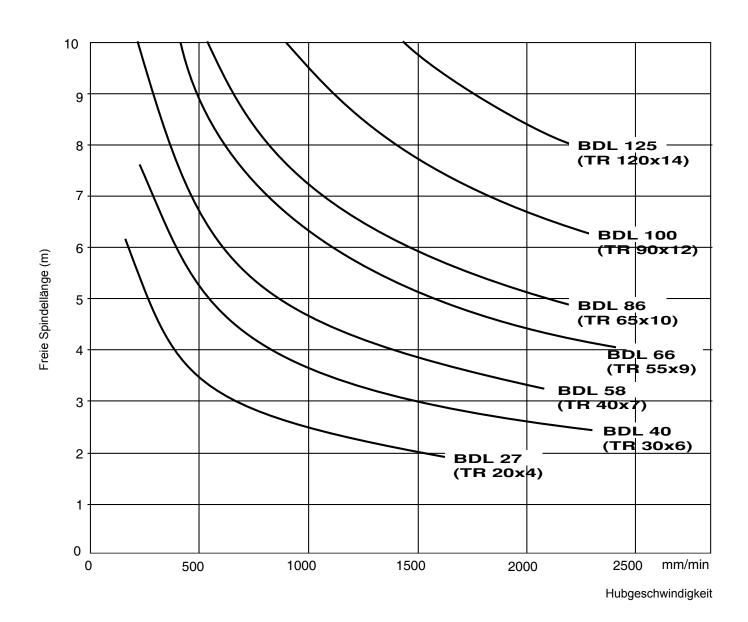

n	\ \	/				800	kN			700	kN			600	kN			500	kN	
U/min	mm/	/min	η	d	TL	_P	TH	ΗP	T L	_P	TH	ΗP	TL	. P	TH	ŀΡ	TL	_ P	l TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
850	2267	756	.39	.29					748	67			641	57	293	26	535	48	244	22
750	2000	667	.39	.28					761	60			653	51	300	24	545	43	250	20
500	1333	444	.36	.26	925	49			810	43	378	20	695	37	324	17	579	31	271	14
300	800	267	.33	.23	1005	32	477	15	880	28	418	13	754	24	359	11	629	20	299	9.4
250	667	222	.32	.22	1036	27	495	13	906	24	434	11	777	20	372	9.8	648	17	311	8.2
200	533	178	.31	.21	1075	23	518	11	941	20	454	9.6	807	17	389	8.3	673	14	325	6.9
150	400	133	.30	.20	1127	18	549	8.6	987	16	481	7.5	846	14	412	6.5	706	11	344	5.4
125	333	111	.29	.19	1162	15	569	7.5	1017	13	498	6.6	872	11	428	5.6	727	9.4	357	4.7
100	267	89	.28	.19	1204	13	595	6.2	1054	11	521	5.4	904	9.8	447	4.7	754	8.1	373	3.9
50	133	44	.25	.16	1341	7.0	679	3.6	1174	6.1	595	3.2	1007	5.3	510	2.7	839	4.4	426	2.3

n	\	/				400	kN			300	kN			200	kN	
U/min	mm/	/min	η	d	ΤL	_P	TH	łΡ	Τl	_ P	TH	ΗP	Tι	_ P	l TH	1P
	L	Н	L	Н	Nm	kW	Nm	kW								
850	2267	756	.39	.29	429	38	196	17	322	29	148	13	216	19	100	8.9
750	2000	667	.39	.28	436	34	201	16	328	26	151	12	220	17	102	8.2
500	1333	444	.36	.26	464	25	217	11	349	18	164	8.7	234	12	110	5.8
300	800	267	.33	.23	504	16	240	7.5	379	12	181	5.7	254	8.1	122	3.8
250	667	222	.32	.22	519	14	249	6.5	390	10	188	4.9	261	6.8	126	3.3
200	533	178	.31	.21	539	12	260	5.5	405	8.7	196	4.2	271	5.8	132	2.8
150	400	133	.30	.20	565	9.0	276	4.3	425	6.8	208	3.3	284	4.5	140	2.2
125	333	111	.29	.19	582	7.5	286	3.8	437	5.7	215	2.8	293	3.8	145	1.9
100	267	89	.28	.19	604	6.5	299	3.1	454	4.9	225	2.3	303	3.3	151	1.6
50	133	44	.25	.16	672	3.5	341	1.8	505	2.6	257	1.4	338	1.8	172	.91

TAKTFAKTOR (ED) BD/BDL

Taktfaktor, bei einem anderen ED als 20 %/Stunde muss die Betriebsleistung (Pd) gemäß dem Diagramm angepasst werden, das mit der folgenden Formel berechnet ist:

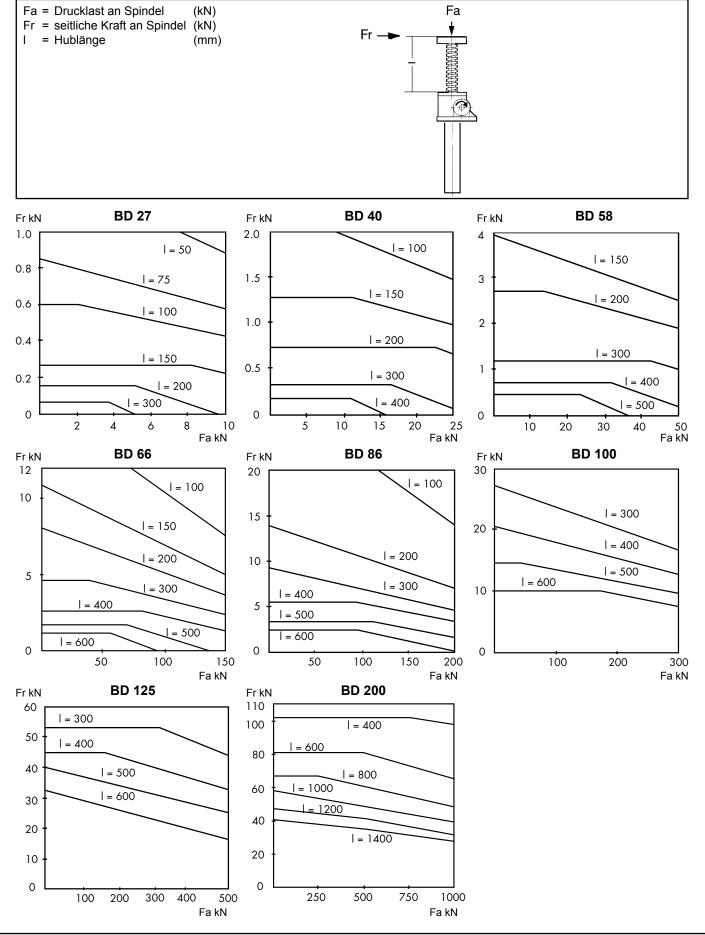
$$P_{ED} = \frac{20 \%}{ED \%} \times P_{max}$$

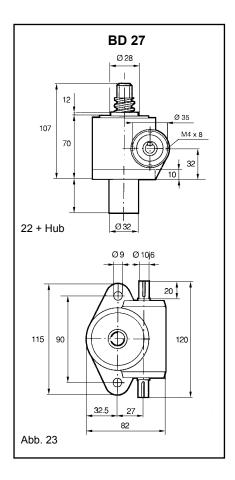

Thermische Nennleistung 20 % ED (eingängige Spindel)

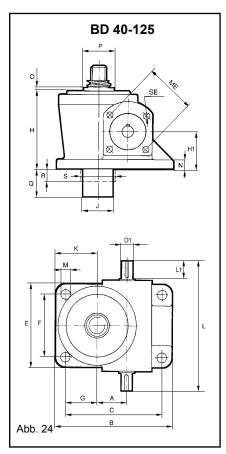
Größe BD-B	DL	27	40	58	66	86	100	125	200
D KW	L	0.2	.55	0.9	1.5	2.9	3.7	5.1	12.5
P _{max} kW	Н	0.15	.5	0.8	1.3	2.6	3.3	4.5	12.0

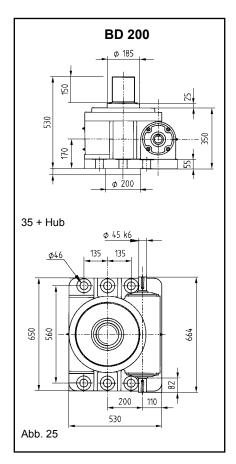
Thermische Nennleistung 20 % ED (zweigängige Spindel)

G	Größe BD-B	DL	27	40	58	66	86	100	125	200
	18/07	L	0.25	0.7	1.1	1.9	3.6	4.7	6.4	16.0
	_{max} kW	Н	0.20	0.6	1.0	1.6	3.2	4.1	5.6	15.0

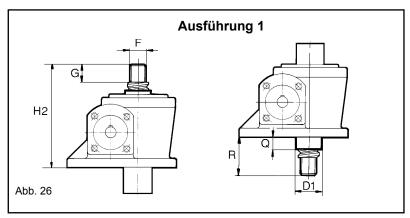

KRITISCHE LAUFMUTTERGESCHWINDIGKEIT

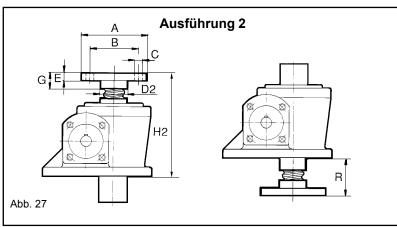

Max. zulässige Geschwindigkeit V mm/Min mit Fettschmierung

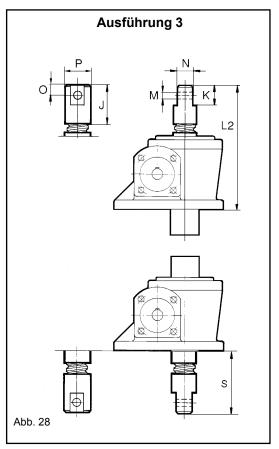

BD-BDL	Untersetzun	gsverhältnis	BD/BDL	Untersetzungsverhältnis
Eingängig	L	н	Zweigängig	L
27	1600	500	27	3200
40	2300	500	40	4600
58	2100	500	58	4200
66	2400	600	66	4800
86	2200	550	86	4400
100	2300	550	100	4600
125	2200	550	125	4400
200	1180	410	200	2360


ZULÄSSIGE SEITLICHE KRAFT AN DER SPINDEL BD

ABMESSUNGEN

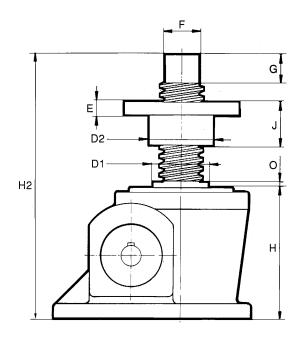





Größe	40	58	66	86	100	125
Α	40	58	66	86	100	125
В	156	196	222	300	350	460
С	130	158	178	250	280	380
Ø D1j6	14	19	24	30	35	38
Е	110	170	190	220	260	300
F	84	134	146	170	190	220
G	42	40	51	85	95	140
Н	105	130	157	182	225	275
H1	50	55	68	80	102	125
ØJ	45	55	75	90	120	150
K	55	60	73	110	130	180
L	172	237	268	318	356	486
L1	25	35	40	47	58	58
ØM	13	18	21	26	35	42
N	12	12	16	20	25	35
0	15	15	15	20	20	25
ØР	40	50	70	80	110	140
Q	25 + Hub	25 + Hub	25 + Hub	45 + Hub	45 + Hub	55 + Hub
R	-	-	-	45	45	55
S	-	-	-	100	132	160
SE		M8 x 12	M8 x 12	M8 x 12	M10 x 15	M10 x 15
ME		65	80	80	88	96

Wellennut BS 4235

ABMESSUNGEN BD 27-200 KOPFAUSFÜHRUNG 1, 2, 3



Größe	27	40	58	66	86	100	125	200
ØΑ	65	92	122	150	185	215	285	380
ØВ	50	65	90	110	140	170	220	290
ØС	4x7	4x14	4x18	4x21	4x26	6x26	6x33	6x48
Ø D1	28	40	50	70	80	110	140	185
Ø D2	30	40	55	70	90	120	150	200
E	8	12	16	20	25	25	32	60
F	M14x2	M20x1.5	M30x2	M40x3	M50x3	M70x4	M90x4	M130x4
G	20	25	36	50	60	85	110	150
H2	107	150	186	227	267	335	415	530
J	55	75	100	125	160	200	265	360
K	25	35	50	60	80	100	130	180
L2	142	200	250	302	367	450	570	740
Ø M H11	12	18	25	30	40	50	65	90
N	20	25	35	45	60	80	100	140
0	12.5	17.5	25	30	40	50	65	90
ØР	30	40	55	70	90	120	150	200
Q	12	15	15	15	20	20	25	25
R	37	45	56	70	85	110	140	180
S	72	95	120	145	185	225	295	390

ABMESSUNGEN BDL 27-200

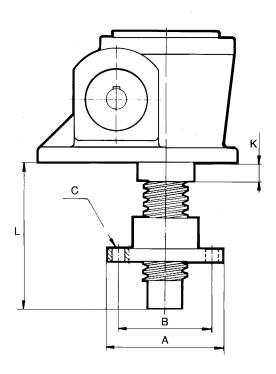
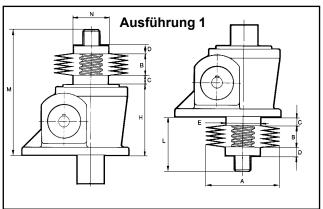
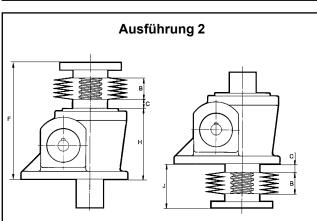
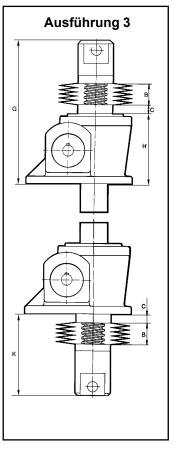


Abb. 29


Größe	27	40	58	66	86	100	125	200
ØA	65	92	122	150	185	215	285	380
ØВ	50	65	90	110	140	170	220	290
ØС	4x7	4x14	4x18	4x21	4x26	6x26	6x33	6x48
Ø D1	28	40	50	70	80	110	140	185
Ø D2	30	40	55	70	90	120	150	200
E	10	15	20	25	30	35	50	90
ØF h7	12	20	30	40	50	70	100	140
G	20	30	40	60	60	90	120	160
Н	70	105	130	157	182	225	275	350
H2	148 + Hub	215 + Hub	265 + Hub	332 + Hub	365 + Hub	465 + Hub	580 + Hub	770 + Hub
J	25	40	55	75	85	110	140	200
K	12	15	15	15	20	20	25	25
L	84 + Hub	115 + Hub	155 + Hub	196 + Hub	205 + Hub	261 + Hub	330 + Hub	430 + Hub
0	12	15	15	15	8	10	10	25


ABMESSUNGEN MIT PVC-MANSCHETTEN BD 27-125


BD 200 Rücksprache mit AnwendungsingenieurenBD 27-125

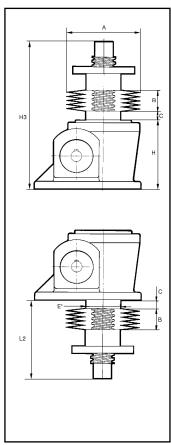
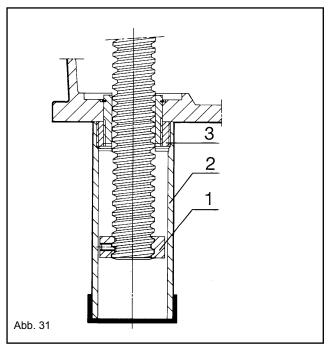

BDL 27-125

Abb. 30

Größe	27	40	58	66	86	100	125
ØA	95	115	130	150	190	225	270
B min.	5	5	5	5	5	5	5
max.	0.05 x Hub	0.05 x Hub	0.05 x Hub	0.05 x Hub	0.05 x Hub	0.05 x Hub	0.05 x Hub
С	12	15	15	15	20	20	25
D	15	15	15	15	15	15	15
Ø E*	28	40	50	70	80	110	140
F	102 + B	145 + B	181 + B	222 + B	262 + B	330 + B	410 + B
G	137 + B	195 + B	245 + B	297 + B	362 + B	445 + B	565 + B
н	70	105	130	157	182	225	275
H3	148 + 1.05	215 + 1.05	265 + 1.05	332 + 1.05	365 + 1.05	465 + 1.05	580 + 1.05
	x Hub	x Hub	x Hub	x Hub	x Hub	x Hub	x Hub
J	32 + B	40 + B	51 + B	65 + B	80 + B	105 + B	135 + B
K	67 + B	90 + B	115 + B	140 + B	180 + B	220 + B	290 + B
L	47 + B	55 + B	66 + B	80 + B	95 + B	120 + B	150 + B
L2		<u>-</u>		L + 0.05 x Hub)		
М	117 + B	160 + B	196 + B	237 + B	277 + B	345 + B	425 + B
N	30	40	55	70	90	120	150

^{*}Bohrung für Schlauchschelle ØE + 30

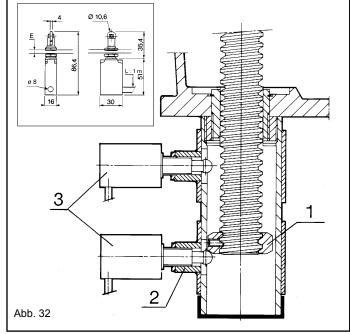

OPTIONEN

ANSCHLAGMUTTER (SM)

Anschlagmuttern können an allen Hubgetrieben an der Ober- und Unterseite des Hauptgehäuses montiert werden.

Sie müssen eingebaut werden, wenn die Gefahr eines Überhubs besteht, wodurch sich die Spindel aus dem Schneckengewinde lösen könnte.

- 1 Anschlagmutter
- 2 Schutzrohr
- 3 Rohrhülse



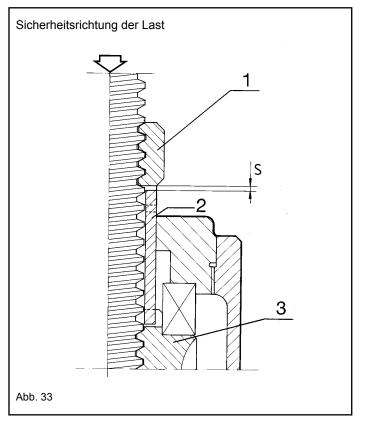
ANSCHLAGMUTTER (SM) + ENDLAGENSCHALTER (LS)

Alle Hubgetriebe können mit Endlagenschaltern geliefert werden, die für die meisten Anwendungen geeignet sind. Standardmäßig werden zwei Endlagenschalter und eine Anschlagmutter geliefert.

Am Schutzrohr können obere/untere Hubbegrenzer montiert werden. Auf Wunsch sind einstellbare Hubbegrenzer lieferbar.

- 1 Anschlagmutter
- 2 Träger
- 3 Endlagenschalter

SICHERUNGSMUTTER (SHM)


Bei bestimmten Anwendungen kann eine zusätzliche Sicherungsmutter erforderlich sein. Sie dient dazu, ein Absenken der Last bei einem Ausfall des Spindelmuttergewindes zu verhindern.

Durch Kontrolle des Sicherheitsabstands zwischen Spindel- und Sicherungsmutter kann eine Abnutzung erkannt werden. Wenn der Sicherheitsabstand null erreicht, hat die Spindelmutter ihre Verschleißgrenze erreicht und muss ersetzt werden. Bei Anwendungen, wo die Sicherungsmutter nicht zugänglich ist, sind zur Anzeige der max. Abnutzung elektromechanische Schalter lieferbar.

- 1 Sicherungsmutter
- 2 Abstandhalter
- 3 Schneckenrad

Lastrichtung ist von Bedeutung!

Die Kombinationsmöglichkeiten mit anderen Optionen sind eingeschränkt. Bei unseren Anwendungsingenieuren erhalten Sie weitere Informationen.

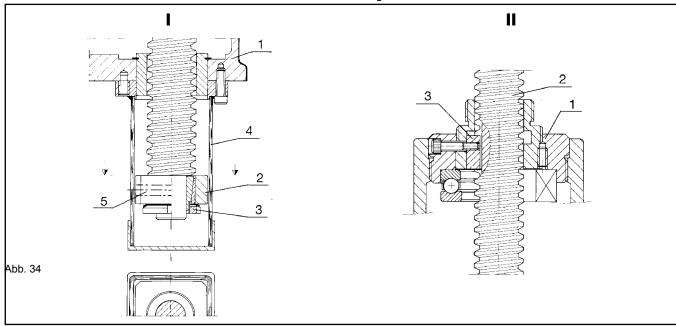
VERDREHSICHERUNG

Bei Anwendungen, wo die Last angehoben/abgesenkt werden muss, und eine dauerhafte Befestigung von Kopfplatte/Gabel nicht praktisch wäre, muss die Spindel verdrehgesichert sein.

Zwei Optionen sind lieferbar:

I) LR - Verdrehsicherung (Rohr)

Angefertigtes Schutzrohr im Weichstahl-Rechteckabschnitt. Spindelkopf komplett mit Mutter (Größe an Rechteckabschnitt angepasst).

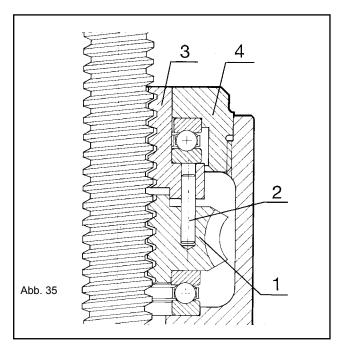

- 1 Getriebegehäuse
- 2 Gegenmutter
- 3 Sperrsystem (Größe hängt von Variante 1 ab)
- 4 Rohi
- 5 Stift (Größe hängt von Variante 2 ab)

II) LRK - Verdrehsicherung (Passfeder)

Die Hubgetriebe werden so modifiziert, dass sie über eine rechteckige Passfeder verfügen, die in eine Passnut greift, die in die Spindellänge geschnitten wird. Dies wird hauptsächlich bei Präzisionsanwendungen eingesetzt, wo minimale radiale Bewegungen erforderlich sind.

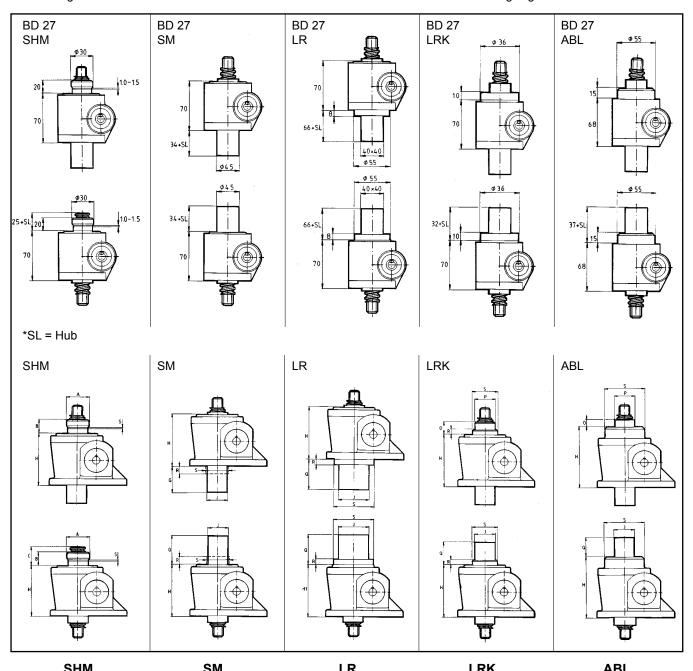
- 1 Hubgetriebegeabdeckung
- 2 Hubspindel
- 3 Passfeder

Die Kombinationsmöglichkeiten mit anderen Optionen sind eingeschränkt.


SPIELSICHERUNG (ABL)

Wo die Belastung auf ein Hubgetriebe in Spannungs- und Kompressionsrichtung möglich und das Spindelspiel ein kritischer Faktor ist, können die Hubgetriebe mit einer Spieleliminierung in Form eines modifizierten Schneckenrads mit einer zusätzlichen Mutter geliefert werden, die den Kontakt mit der Fläche und Flanke des Laufgewindes zulässt.

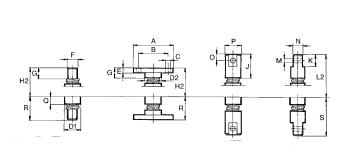
Spiel 0,01-0,05 mm - Im Betrieb kann ein übermäßiges Spiel durch Einstellen der oberen Abdeckung eliminiert werden. Die Muttern werden auf einen vordefinierten Spalt getrennt, um die Einstellung der Spieleliminierung aufzuheben, wenn sich die Laufgewindebreite um 25 % verringert hat.


- 1 Schneckenrad
- 2 Spannstift
- 3 Einstellmutter
- 4 Hubgetriebegeabdeckung

Die Kombinationsmöglichkeiten mit anderen Optionen sind eingeschränkt.

ABMESSUNGEN SHM - SM - LR - LRK - ABL

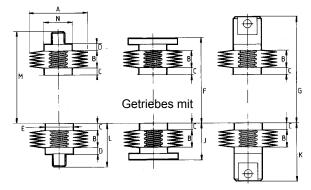
Abmessungen für BD86 - BD200. Weitere Informationen erhalten Sie von unseren Anwendungsingenieuren.



	SHM			SIVI			L	ĸ		L	.KK			ABL	
BD	40	58	66	40	58	66	40	58	66	40	58	66	40	58	66
ØΑ	45	55	75	-	1	-	-	1	-	-	-	-	-	-	-
В	27	35	52	1	1	-	-	1	1	-	-	-	-	-	-
С	32+SL	40+SL	57+SL	1	1	-	-	1	1	1	-	1	-	-	-
Н	105	130	157	105	130	157	105	130	157	105	130	157	120	152	190
H 1	-	-	-	-	-	-	103	128	155	-	-	-	-	-	-
ØJ	-	-	-	55	75	90	-	-	-	45	55	75	45	55	75
# J	-	-	-	-	ı	-	60X60	70X70	80X80	-	-	-	-	-	-
0	-	-	-	1	1	-	-	1	ı	20	15	30	15	15	15
ØР	-	-	-	-	1	-	-	ı	ı	40	50	70	40	50	70
Q	-	-	-	43+SL	48+SL	62+SL	77+SL	86+SL	120+SL	30+SL	25+SL	40+SL	25+SL	25+SL	25+SL
R	-	-	-	-	-	37	10	10	15	5	-	15	-	-	-
S	1,5-2,2	1,8-2,5	2,3-3,3	-	-	Ø 100	Ø 80	Ø 100	Ø 110	Ø 50	-	Ø 80	Ø 80	Ø 110	Ø 120

ABMESSUNGEN SHM - SM - LR - LRK - ABL

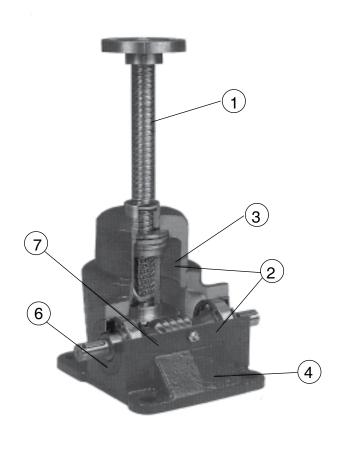
Abmessungen für BD86 - BD200. Weitere Informationen erhalten Sie von unseren Anwendungsingenieuren.


Ohne Manschette

Größe	27	40	58	66	
ØΑ	65	92	122	150	
ØВ	50	65	90	110	
øс	4 x 7	4 x 14	4 x 18	4 x 21	
Ø D1	28	40	50	70	
Ø D2	30	40	55	70	
E	8	12	16	20	
F	M14 x 2	M20 x 1,5	M30 x 2	M40 x 3	
G	20	25	36	50	
SHM	120	167	210	269	
SM	107	150	186	227	
LR H2	107	150	186	227	
LRK	117	155	186	242	
ABL	119	165	207	260	
J	55	75	100	125	
K	25	35	50	60	
SHM	155	217	274	344	
SM	142	200	250	302	
LR L2	142	200	250	302	
LRK	152	205	250	317	
ABL	154	215	271	335	
Ø M H11	12	18	25	30	
N	20	25	35	45	
0	12,5	17,5	25	30	
ØР	30	40	55	70	
Q	12	15	15	15	
SHM*	37/50	45/62	56/80	70/112	
SM	37	45	56	70	
LR R	37	45	56	70	
LRK	37	45	56	70	
ABL	37	45	56	70	
SHM*	72/85	95/112	120/144	145/187	
SM	72	95	120	145	
LR S	72	95	120	145	
LRK	72	95	120	145	
ABL	72	95	120	145	

^{*}Alternative hängt von der Montage von SHM ab.

Mit Manschette



Größe	27	40	58	66	
ØΑ	115	115	130	150	
_ min	. 5	5	5	5	
B max	. 0.05 x SL*	0.05 x SL*	0.05 x SL*	0.05 x SL*	
С	12	15	15	15	
D	15	15	15	15	
Ø E**	28	40	50	70	
SHM	-	-	-	-	
SM	102 + B	145 + B	181 + B	222 + B	
LR F	102 + B	145 + B	181 + B	222 + B	
LRK	112 + B	150 + B	181 + B	237 + B	
ABL	114 + B	165 + B	203 + B	288 + B	
SHM	-	-	-	-	
SM	137 + B	195 + B	245 + B	297 + B	
LR G	137 + B	195 + B	245 + B	297 + B	
LRK	147 + B	200 + B	245 + B	312 + B	
ABL	149 + B	215 + B	267 + B	363 + B	
SHM	32 + B	40 + B	51 + B	65 + B	
SM	32 + B	40 + B	51 + B	65 + B	
LR J	32 + B	40 + B	51 + B	65 + B	
LRK	32 + B	40 + B	51 + B	65 + B	
ABL	32 + B	40 + B	51 + B	65 + B	
SHM	67 + B	90 + B	115 + B	140 + B	
SM	67 + B	90 + B	115 + B	140 + B	
LR K	67 + B	90 + B	115 + B	140 + B	
LRK	67 + B	90 + B	115 + B	140 + B	
ABL	67 + B	90 + B	115 + B	140 + B	
SHM	47 + B	55 + B	66 + B	80 + B	
SM	47 + B	55 + B	66 + B	80 + B	
LR L	47 + B	55 + B	66 + B	80 + B	
LRK	47 + B	55 + B	66 + B	80 + B	
ABL	47 + B	55 + B	66 + B	80 + B	
SHM	-	-	-	-	
SM	117 + B	160 + B	196 + B	237 + B	
LR M	117 + B	160 + B	196 + B	237 + B	
LRK	127 + B	165 + B	196 + B	252 + B	
ABL	129 + B	180 + B	218 + B	303 + B	
N	30	40	55	70	

^{*}SL = Hub

^{**}Bohrung für Schlauchschelle ØE + 30

BESCHREIBUNG BDK - BDKL

- 1 Kugelumlaufspindel
- 2 Axial- und Radiallager
- 3 Fett mit EP-Qualität
- 4 Gehäuse aus Sphäroguss
- 5 Alkydharzlackierung Stärke 85 µm, Farbe RAL 5015
- 6 Gehärtete und geschliffene Schnecke
- 7 Schneckenrad aus Schleuderguss-Zinnbronze
- 8 Manschetten aus PVC, Stahl oder anderen Werkstoffen

Die Kugelumlaufspindel-Hubgetriebe BDK und BDKL sind unter Volllast auf einen Einsatz von 60 % (ED) in 10 Minuten und nicht mehr als 30 % pro Stunde insgesamt bei einer Umgebungstemperatur von +25 °C ausgelegt. Die Kugelumlaufspindel-Hubgetriebe sind bei Lieferung mit Fett der Qualität EP befüllt. Die Hubspindel sollte mit demselben Fetttyp geschmiert werden. Der zulässige Betriebstemperaturbereich ist -30 °C bis +100 °C.

Für andere Bedingungen wenden Sie sich bitte an unsere Anwendungsingenieure.
Andere Größen auf Wunsch lieferbar.

Technische Daten BDK - BDKL

Andere Kapazitäten und Spindelgrößen auf Wunsch lieferbar.

Größe	27	40	58	66
Max. Kapazität (N)	8 000	25 000	50 000	125 000
Hubspindel	20 x 5	25 x 10	40 x 10	50 x 10
Untersetzung (L)	9:1	7:1	6.75:1	7:1
Hub pro Umdrehung (mm)	0.555	1.428	1.481	1.428
Anlaufmoment bei max. Last (Nm)	2.5	16.0	32	76
Max. Betriebsleistung bei 30% ED (kW)	0.25	0.77	2.0	2.9
Anlaufwirkungsgrad	0.28	0.35	0.39	0.37
Anlaufmoment an Hubspindel bei max. Last (Nm)	9	56	114	292
Betriebswirkungsgrad		Siehe Seite "Ner	nleistungswerte"	
*Haltemoment (Nm)	0.35	2.5	6.0	14.0
Gewicht bei 100 mm Hub BDK/BDKL (kg)	4/3.5	11/10	26/20	40/34
Gewicht der Hubspindel 100 mm (kg)	0.2	0.32	0.84	1.36

^{*)} Das Haltemoment entspricht dem erforderlichen Drehmoment an der Antriebswelle, damit die Last nicht abgesenkt wird.

KOMPRESSIONSLASTTABELLE BDK-BDKL EULER I

Größe		27	40	58	66
Max. Kapazität (kN)	8	25	50	125	
Max. Kapazität, Kompressionslast (kN) für	0.2				
unterschiedliche Hublängen bei dreifachem Bruch-	0.3	6.6	18		
Sicherheitsfaktor (Euler I)	0.4	3.7	10		
	0.5	(2.4)	6.6	40	119
Freie Last	0.6		(4.6)	28	83
egn and a second	0.7			20	61
le l	0.8			16	46
Freie Spindellänge (m)	0.9			(12)	37
ë S	1.0			(10)	30
Fre	1.25				(19)
	1.50				
	1.75				
	2.00				
Abb. 36	2.25				
. 155. 55	2.50				

Kompressionslasttabelle BDK-BDKL Euler II

Größe		27	40	58	66
Max. Kapazität (kN)	8	25	50	125	
Max. Kapazität, Kompressionslast (kN) für	0.2				
unterschiedliche Hublängen bei dreifachem Bruch- Sicherheitsfaktor (Euler II)	0.3				
ਵ					
Geführte Last Spindellänge (m)	0.6	6.6	18		
	0.7	4.9	13		
<u>g</u>	0.8	3.7	10		
	0.9	(3.0)	8.1		
reie	1.0	(2.4)	6.6	40	119
H. W.	1.25		(4.2)	26	76
	1.50			18	53
	1.75			(13)	39
	2.00			(10)	30
Abb. 37	2.25				(24)
	2.50				(19)

Die Werte in Klammern dürfen nur bei niedriger Hubgeschwindigkeit und konzentrischer Last an den Hubspindeln angewendet werden.

KOMPRESSIONSLASTTABELLE BDK-BDKL EULER III

Größe			27	40	58	66
Max. Kapazität (kN)			8	25	50	125
Max. Kapazität, Komp	ressionslast (kN) für	0.2				
unterschiedliche Hubla	ängen bei dreifachem Bruch-	0.3				
Sicherheitsfaktor (Eule	er III)	0.4				
		0.5				
Geführte Last	Gestützte Spindel	0.6				
**************************************	(m)	0.7				
\$\tilde{\pi}_{	l ⊕ e e e e e e e e e e e e e e e e e e	8.0	7.7	21		
	ellär	0.9	5.9	16		
	inde	1.0	4.8	13		
	S	1.25	(3.0)	8.4		
	Freie Spindellänge (m)	1.50		5.8	36	106
		1.75		(4.3)	26	78
		2.00			20	60
		2.25			16	47
	7. 77///\///////////////////////////////	2.50			(13)	38
Abb. 38		3.00				26
		3.50				(19)

Die Werte in Klammern dürfen nur bei niedriger Hubgeschwindigkeit und konzentrischer Last an den Hubspindeln angewendet werden.

Nennleistungswerte BDK - BDKL

Nennleistung für BDK-BDKL bei 60 % ED/10 Min. oder max. 30 % ED/Stunde bei Umgebungstemperatur +25 °C.

Hinweis: Nennleistungen entsprechen der Betriebsleistung. Beim Start ist zusätzliche Leistung erforderlich. Siehe "Auswahl der Hubgetriebe".

BDK 27 L (i = 9) 20 x 5

n = Antriebsdrehzahl (U/min)

v = Hubgeschwindigkeit (mm/Min)

 η_d = Betriebswirkungsgrad

L = niedrige Untersetzung

T = Antriebsmoment (Nm)

P = Antriebsleistung (kW)

i = Untersetzung des Schneckengetriebes

n U/Min	v mm/Min	ηd	8	8 kN		kN	4	kN	2	kN	1	kN
		·iu	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2900	1611	.46	1.5	.46	1.2	.36	.87	.27	.56	.17	.40	.12
1750	972	.45	1.5	.28	1.2	.22	.87	.16	.56	.10	.40	.07
1500	833	.45	1.6	.25	1.3	.20	.92	.14	.58	.09	.41	.06
1000	556	.44	1.6	.17	1.3	.13	.92	.10	.58	.06	.41	.05
750	417	.43	1.6	.13	1.3	.10	.92	.07	.58	.05	.41	.05
500	278	.42	1.7	.09	1.3	.07	.97	.05	.61	.05	.42	.05
400	222	.41	1.7	.07	1.3	.06	.97	.05	.61	.05	.42	.05
300	167	.40	1.7	.05	1.3	.05	.97	.05	.61	.05	.42	.05
200	111	.39	1.8	.05	1.4	.05	1.0	.05	.63	.05	.44	.05
100	56	.37	1.9	.05	1.5	.05	1.1	.05	.66	.05	.45	.05
50	28	.35	2.0	.05	1.6	.05	1.1	.05	.68	.05	.46	.05

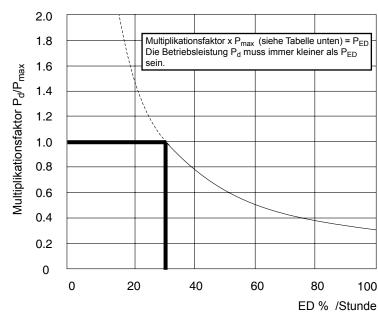
NENNLEISTUNGEN BDK - BDKL

BDK 40 L (i = 7) 25 x 10

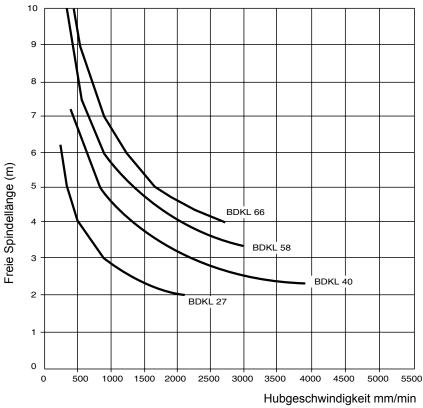
n	V															
U/Min	mm/Min	η_{d}	25	kN	20	kN	15	kN	10	kN	7,5	kN	5	kN	2,5	kN
			Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2700	3857	.56					6.0	1.7	4.1	1.2	3.2	.90	2.2	.63	1.3	.36
1750	2500	.55					6.1	1.1	4.2	.75	3.2	.58	2.3	.41	1.3	.24
1500	2143	.55					6.1	.96	4.2	.66	3.2	.51	2.3	.36	1.3	.20
1000	1429	.52			8.6	.90	6.5	.68	4.5	.47	3.4	.36	2.4	.25	1.4	.14
750	1071	.52			8.7	.69	6.6	.52	4.5	.36	3.5	.28	2.4	.19	1.4	.11
500	714	.51	11	.58	8.9	.47	6.8	.36	4.6	.24	3.6	.19	2.5	.13	1.4	.07
400	571	.50	11	.47	9.1	.38	6.9	.29	4.7	.20	3.6	.15	2.5	.11	1.4	.06
300	429	.49	12	.36	9.3	.29	7.0	.22	4.8	.15	3.7	.12	2.6	.08	1.5	.05
200	286	.48	12	.25	9.5	.20	7.2	.15	4.9	.10	3.8	.08	2.6	.06	1.5	.05
100	143	.46	12	.13	9.9	.10	7.5	.08	5.1	.05	3.9	.05	2.7	.05	1.5	.05
50	71	.44	13	.07	10	.06	7.9	.05	5.4	.05	4.1	.05	2.9	.05	1.6	.05

BDK 58 L (i = 6,75) 40 x 10

n	V															
U/Min	mm/Min	ηd	50	kN	40	kN	30	kN	25	kN	20	kN	15	kN	10	kN
			Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
2000	2963	.58					12	2.5	10	2.1	8.2	1.7	6.3	1.3	4.4	.91
1750	2593	.58					12	2.2	10	1.8	8.2	1.5	6.3	1.1	4.4	.80
1500	2222	.58					12	1.9	10	1.6	8.3	1.3	6.4	.99	4.4	.69
1000	1481	.55			17	1.8	13	1.4	11	1.1	8.7	.93	6.7	.71	4.6	.49
750	1111	.55			17	1.3	13	.99	11	.83	8.8	.67	6.7	.51	4.7	.36
500	741	.52	23	1.2	18	.97	14	.73	12	.61	9.3	.50	7.1	.38	4.9	.26
400	593	.51	23	.95	18	.76	14	.58	12	.49	9.4	.39	7.2	.30	5.0	.21
300	444	.51	23	.72	19	.58	14	.44	12	.37	9.5	.30	7.3	.23	5.0	.16
200	296	.49	24	.49	19	.39	14	.30	12	.25	9.7	.20	7.4	.15	5.1	.11
100	148	.48	25	.26	20	.21	15	.16	13	.13	10	.11	7.7	.08	5.3	.06
50	74	.46	26	.13	21	.10	16	.08	13	.07	11	.05	8.0	.05	5.5	.05


BDK 66 L (i = 7) 50 x 10

n U/Min	v mm/Min	ηd	125	i kN	100) kN	75	kN	50	kN	25	kN	20	kN	10	kN
			Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1750	2500	.56							20	3.7	10	1.9	8.4	1.5	4.5	.83
1500	2143	.56							20	3.2	10	1.6	8.4	1.3	4.5	.72
1000	1429	.55							21	2.1	11	1.1	8.6	.88	4.6	.47
750	1071	.52					32	2.5	22	1.7	11	.86	9.1	.70	4.8	.37
500	714	.51					33	1.7	22	1.1	11	.59	9.2	.48	4.9	.25
300	429	.50			45	1.4	34	1.1	23	.71	12	.36	9.4	.30	5.0	.16
250	357	.50			45	1.2	34	.90	23	.61	12	.31	9.5	.25	5.0	.13
200	286	.49			46	.95	34	.72	23	.48	12	.25	9.6	.20	5.1	.11
150	214	.49	58	.91	46	.73	35	.55	23	.37	12	.19	9.7	.15	5.2	.08
125	179	.48	58	.76	47	.61	35	.46	24	.31	12	.16	9.8	.13	5.2	.07
100	143	.48	59	.62	47	.50	36	.37	24	.25	12	.13	10	.10	5.3	.06
50	71	.46	62	.32	49	.26	37	.19	25	.13	13	.07	10	.05	5.5	.05


TAKTFAKTOR (ED) BDK/BDKL

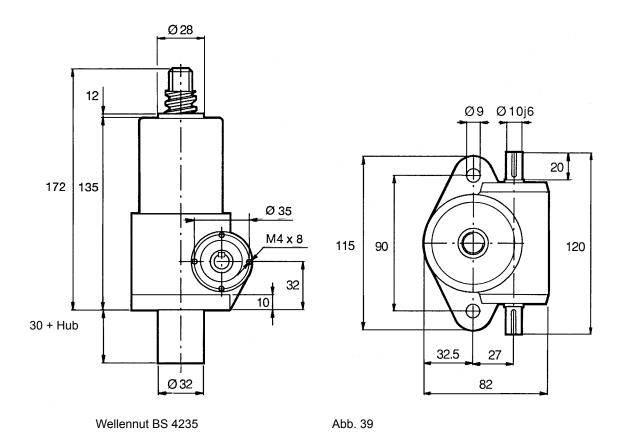
Taktfaktor, bei einem anderen ED als 30%/Stunde muss die Betriebsleistung (Pd) gemäß dem Diagramm angepasst werden, das mit der folgenden Formel berechnet ist:

$$P_{ED} = \frac{30\%}{ED \%} \times P_{max}$$

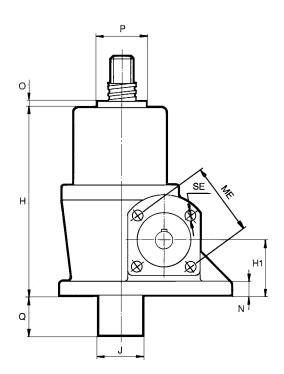
Kritische Laufmuttergeschwindigkeit

Max. zulässige Geschwindigkeit V mm/Min mit Fettschmierung

	Untersetzungsverhältnis
BDK / BDKL	L
27	2100
40	3900
58	3000
66	2700


STANDZEIT VON KUGELUMLAUFSPINDELN

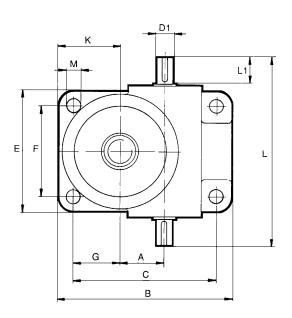
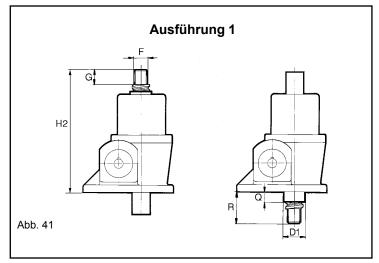
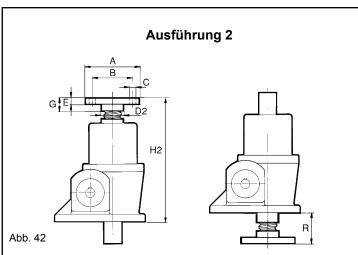
Die Sollstandzeit wird von 90 % der Kugelumlaufspindeln erreicht, bevor die Laufflächen Ermüdungserscheinungen zeigen. 50 % der Kugelumlaufspindeln erreichen eine Standzeit, die dem fünffachen ihrer Sollstandzeit entspricht.

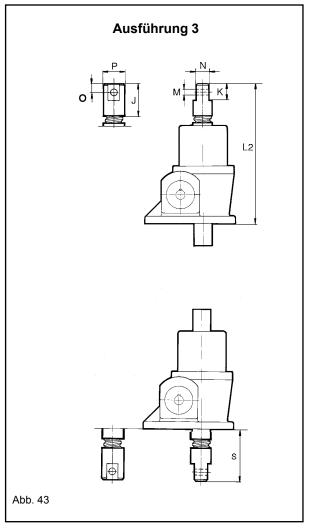

Standzeit in laufenden Metern x 103

		100%	75%	50%
Größe	Max. Last (kN)	der max. Last (km)	der max. Last (km)	der max. Last (km)
27	8	15.6	37.1	125.1
40	25	5.8	13.7	46.1
58	50	10.8	25.6	86.4
66	125	1.5	3.5	11.8

Abmessungen BDK 27

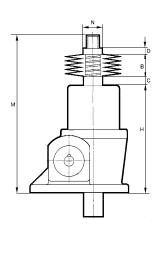
ABMESSUNGEN BDK 40-66

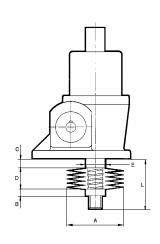




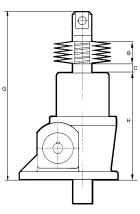

Abb. 40

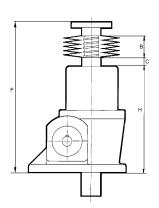
Größe	40	58	66
А	40	58	66
В	156	196	222
С	130	158	178
Ø D1j6	14	19	24
E	110	170	190
F	84	134	146
G	42	40	51
н	190	265	318
H1	50	55	68
ØJ	45	55	75
К	55	60	73
L	172	237	268
L1	25	35	40
ØM	13	18	21
N	12	12	16
0	15	15	15
ØР	40	50	70
Q	35 + Hub	35 + Hub	35 + Hub
SE	M8 x 12	M8 x 12	_
ME	65	80	_

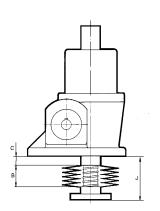
ABMESSUNGEN BDK 27-66 KOPFAUSFÜHRUNG 1, 2, 3

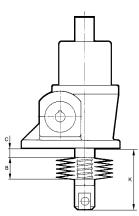
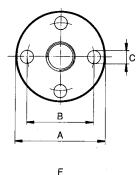


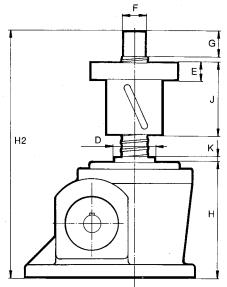





Größe	27	40	58	66
ØA	65	92	122	150
ØВ	50	65	90	110
øс	4x7	4x14	4x18	4x 21
Ø DI	28	40	50	70
Ø D2	30	40	55	70
Е	8	12	16	20
F	M14x2	M20x1.5	M30x2	M40x3
G	20	25	36	50
H2	172	235	321	388
J	55	75	100	125
K	25	35	50	60
L2	207	285	385	463
Ø M H11	12	18	25	30
N	20	25	35	45
О	12.5	17.5	25	30
ØР	30	40	55	70
Q	12	15	15	15
R	37	45	56	70
S	72	95	120	145


ABMESSUNGEN MIT MANSCHETTEN BDK 27-66


Abb. 44

Größe	27	40	58	66
ØA	95	115	130	150
min. B	5	5	5	5
max.	0.05 x Hub	0.05 x Hub	0.05 x Hub	0.05 x Hub
С	12	15	15	15
D	15	15	15	15
E*	28	40	50	70
F	172 + B	235 + B	321 + B	388 + B
G	207 + B	285 + B	385 + B	463 + B
Н	135	190	265	318
J	37 + B	45 + B	56 + B	70 + B
K	72 + B	95 + B	120 + B	145 + B
L	52 + B	60 + B	71 + B	85 + B
M	187 + B	250 + B	336 + B	403 + B
N	30	40	55	70

^{*}Bohrung für Schlauchschelle Ø E + 30

ABMESSUNGEN BDKL 27-66

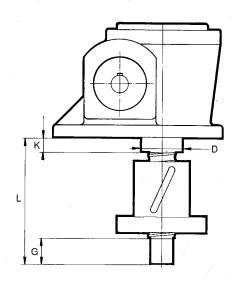
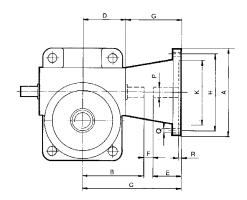
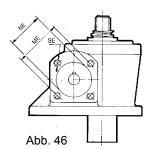


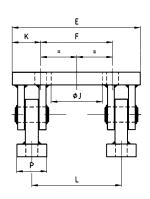
Abb. 45


Größe	27	40	58	66
ØA	83	72	117	137
ØВ	70	57	91	108
ØС	4 x 7	6 x 9	8 x 18	8 x 18
ØD	28	40	50	70
E	17	18	28	30
Ø F h7	12	20	30	40
G	20	30	40	60
Н	70	105	130	157
H 2	185 + Hub	250 + Hub	340 + Hub	420 + Hub
J	57	88	114	136
K	12	15	15	15
L	121 + Hub	150 + Hub	230 + Hub	284 + Hub


IEC-MOTORFLANSCH

Informationen für BD86 - BD200 erhalten Sie von unseren Anwendungsingenieuren.

	3010117 111		<u></u>		<u> </u>																
Größe	Motor	Ø	Α	В	(Ø	Н	Ø	K	ØΡ		Q	R	SE	ME	NE	D	Е	F	G
	Größe	B14	B5		B14	B5	B14	B5	B14	B5		B14	B5						/B5	/B5	
BD27	63	90	-		100.5	-	75		60		11	6		3.5					23	17.5	62
BD27	71	105	-	60	111.5	-	85		70		14	7		4	M4x8	35	28	38.5	30	21.5	73
BD27	80	120	-		119	-	100		80		19	7		4					40	19	80.5
BD40	63	92	140		112	112	75	115	60	95	11	6	6	3.5					23	3	52
BD40	71	102	160	86	118	118	85	130	70	110	14	7	7	4	M8x12	65	47	60	30	1/2	57/58
BD40	80	118	200		128	128	100	165	80	130	19	7	11.5	4					40	2	68
BD40	90	140	200		138	138	115	165	95	130	24	9	11.5	4					50	2	78
BD58	71	108	160		151	151	85	130	70	110	14	7	7	4					30	2.5	69
BD58	80	118	200		161	171	100	165	80	130	19	7	11.5	4					40	2.5/	89
																				12.5	
BD58	90	140	200	118.5	171	171	115	165	95	130	24	9	11.5	4	M8x12	80	62	82	50	2.5	89
BD58	100/112	160	250		181.5	181.5	130	215	110	180	28	9	14	5					60	3	99.5
BD66	71	108	160		171	171	85	130	70	110	14	7	7	4					30	7	79
BD66	80	118	200	134	181	191	100	165	80	130	19	7	11.5	4	M8x12	80	62	92	40	7	89
BD66	90	140	200		191	191	115	165	95	130	24	9	11.5	4					50	7	99
BD66	100/112	160	250		201.5	201.5	130	215	110	180	28	9	14	5					60	7.5	109


Auf Wunsch sind größere Hubgetriebe-Motorflansche lieferbar. Alle IEC-Motoren sind zulässig. Andere Motoren auf Wunsch.

Zapfen

Ein- und Zweifachzapfen lieferbar

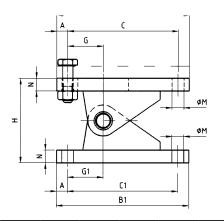
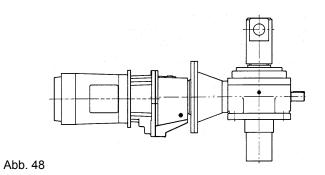
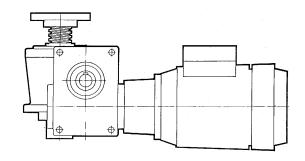




Abb. 47

Größe	Α	В	B1	С	C1	Е	F	G	G1	Н	J	K	L	М	N	Р
40	13	156	156	130	130	140	84	42	42	80	60	28	100	14	13	30
58	19	196	205	158	165	170	134	40	47	105	80	18	125	18	16	35
66	22	222	234	178	190	250	146	51	63	150	95	52	170	22	22	70
86	25	300	300	250	250	300	170	85	85	170	125	65	210	26	28	70
100	35	350	350	280	280	350	190	95	95	205	155	80	250	33	34	80
125	40	460	460	380	380	440	220	140	140	260	200	110	320	39	47	90

HUBGETRIEBE-KOMBINATION MIT ANDEREN PRODUKTEN FÜR NIEDRIGE HUBGESCHWINDIGKEITEN

Anordnungsbeispiele

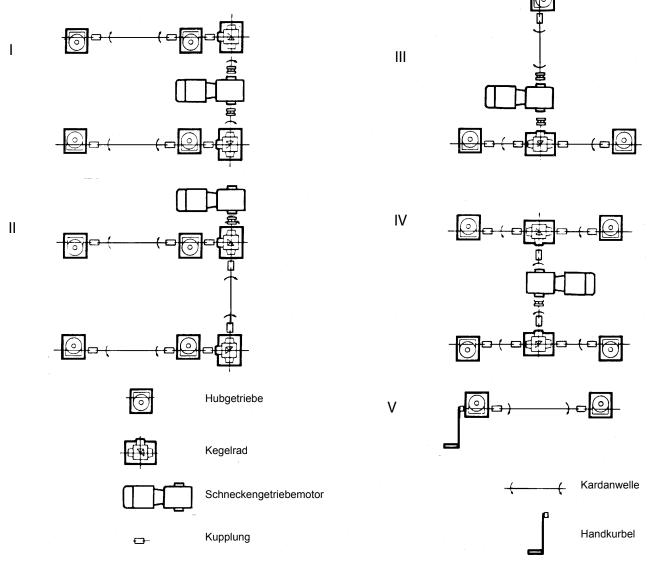
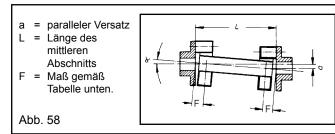


Abb. 49

KREUZGELENKWELLE

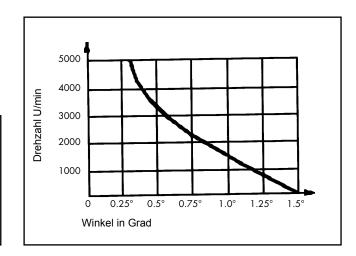
Typ X-G


Kreuzgelenkwellen zum Überbrücken jeglichen Abstands und zum Ausgleich auch größerer radialer Ausrichtungsabweichungen.

Das X-Element ist sehr verwindungssteif, ohne Spiel, es verfügt jedoch über Biegeelastizität und ist axial und in Winkelrichtung flexibel. Außerdem ist es ölbeständig und widersteht Temperaturen bis 150 °C.

Auswahl der Kreuzgelenkwellen:

Die Drehmomentkapazität wird in der Tabelle angegeben. Die zulässige Winkelabweichung wird in der Tabelle und im Diagramm unten angegeben.

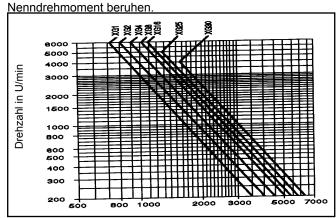

Die max. zulässige Länge des mittleren Abschnitts ist drehzahlabhängig und wird im Diagramm auf Seite 48 angegeben.

Zulässige Ausrichtungsabweichung der Welle

Typen	Winkelgrad	Paralleler Versatz	Axial
		mm (a)	mm
X-G	1°	tan α (L-2F)	±1

^{*} Gilt für 1500 U/min, bei anderen Drehzahlen siehe Diagramm unten.

Abmessungen


Größe	Α	В	d	1	d ₂	d ₃	F	L1	М	N1	R	TK/Teilung	L1L*
			min.	max.									
1 X	18	7	8	25	56	57	12	24	M6	36	30	44/2x180°	
2 X	24	8	12	38	85	88	14	28	M8	55	40	68/2x180°	
4 X	25	8	15	45	100	100	14,5	30	M8	65	45	80/3x120°	
8 X	30	10	18	55	120	125	17	42	M10	80	60	100/3x120°	
16 X	35	12	20	70	150	155	21	50	M12	100	70	125/3x120°	
25 X	40	14	20	85	170	175	23	55	M14	115	85	140/3x120°	 A >
30 X	50	16	25	100	200	205	30	66	M16	140	100	165/3x120°	Abb. 59

^{*} Maß L entspricht einer Nichtstandard-Länge. Bei Anfragen und Bestellungen immer das erforderliche Maß angeben.

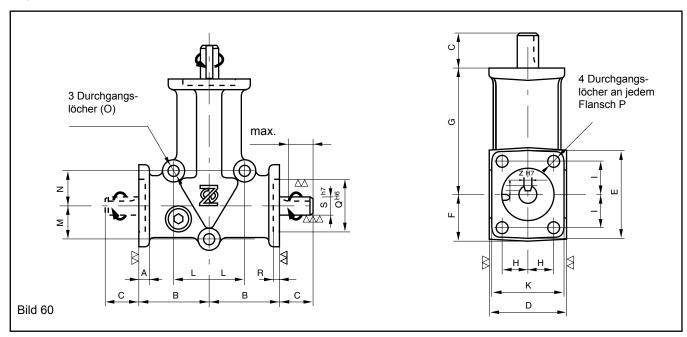
Größen

Die Wellen sind in 7 Größen lieferbar, für Nenndrehmomente von 10 bis 550 Nm bei einem einfachen Element oder bis 1100 Nm, wenn zwei Elemente in Reihe verwendet werden.

Die Kupplungsauswahl muss immer auf dem

Zulässige Drehmomente und Drehzahlen

Größe	Nenn-	Max.	Max.
	drehmoment	Drehmoment	Drehzahl
	TKN	TKmax	nmax
	Nm	Nm	U/Min
1	10	25	10000
2	30	60	10000
4	60	120	8000
8	120	280	7000
16	240	560	6000
25	370	800	5000
30	550	1400	4500


KEGELRÄDER

Wir empfehlen, zwei Kegelrädertypen bei Hubgetriebeanordnungen einzusetzen.

1. Typ DZ

Bei kleineren Lasten und niedrigen Geschwindigkeiten empfehlen wir den Typ DZ.

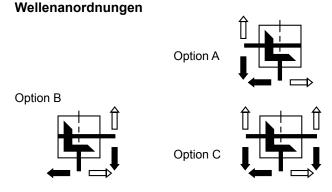
- Sandguss-Aluminiumgehäuse
- Gehärtete, gerade Kegelräder, Untersetzung 1:1 oder 2:1
- DZ1: Lebensdauer-fettgeschmiert.
 DZ2-3-4: Ölgeschmiert, Öl muss alle 1000 Stunden gewechselt werden.
- Alle Einbaulagen sind möglich.
- Wellenmaße gemäß ISO, Passnuten gemäß ISO, DZ1 hat keine Passnuten.
- Lebensdauer ca. 2000 Stunden

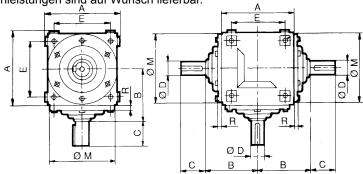
Тур	Welle S	Α	В	O	D	Е	F	G	Н	K	_	L	М	Ν	0	Р	Q	R	S	Т	U	Z
DZ 1	3	5	34	15	33	40	21	60	11	32	15	16	16	16	5.2	4.2	22	2.5	8			
DZ 2	3	7	52	35	52	66	33	90	18	50	26	24	24	24	8.2	6.2	35	5	15	27	3	5
DZ 3	3	8	75	50	76	96	48	140	27	74	38	38	38	38	8.2	8.2	55	3.5	20	40	3.5	6
DZ 4	3	13	80	70	100	98	55	150	38	98	38	45	45	70	12.3	10.3	65	3.5	25	60	4	8

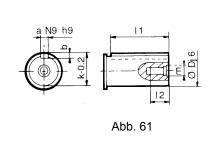
			D	Z1	D	Z2	D.	Z3	D	Z4
Antriebs-	Untersetz verhältnis	Abtriebs-	Antriebs-	Abtriebs-	Antriebs-	Abtriebs-	Antriebs-	Abtriebs-	Antriebs-	Abtriebs-
geschwind.		geschwind.	leistung	drehmoment	leistung	drehmoment	leistung	drehmoment	leistung	drehmoment
n1		n2	P1	T2	P1	T2	P1	T2	P1	T2
U/Min		U/Min	kW	Nm	kW	Nm	kW	Nm	kW	Nm
50	1:1	50	0.02	3.5	0.07	12.3	0.25	47	0.32	62
50	2:1	25	0.01	2.4	0.02	7.3	0.08	29	0.14	53
200	1:1	200	0.07	3.3	0.24	11.4	0.92	44	1.14	55
200	2:1	100	0.01	1.4	0.07	6.4	0.27	26	0.48	46
600	1:1	600	0.18	2.9	0.65	10.3	2.40	38	2.90	46
600	2:1	300	0.04	1.3	0.18	5.8	0.75	24	1.33	42
1000	1:1	1000	0.27	2.6	0.98	9.3	3.58	34	4.25	41
1000	2:1	500	0.07	1.2	0.28	5.3	1.08	21	1.89	36
1500	1:1	1500	0.37	2.3	1.36	8.7	4.64	29	5.87	37
1500	2:1	750	0.10	1.2	0.42	5.2	1.55	20	2.74	35
3000	1:1	3000	0.62	2.0	2.51	8.0	8.73	28	10.75	34
3000	2:1	1500	0.14	0.9	0.60	3.8	2.78	18	4.56	29

KEGELRÄDER

2. Baureihe C


Für größere Lasten und höhere Drehzahlen empfehlen wir die

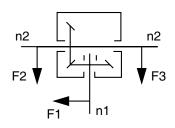

Baureihe C.


- Hochbeständiges Gehäuse aus Aluminiumlegierung.
- Gehärtete, angelassene und geläppte Spiralkegelräder. Untersetzung 1:1 oder 2:1.
- Schmierung mit Synthetiköl. (Bei Auslieferung nicht befüllt.)
- Alle Einbaulagen sind ohne Änderung der Halterung möglich.
- Ölabdichtung auf IP 43
- Lebensdauer ca. 6000 Stunden
- Drehung in zwei Richtungen.

Kegelräder mit anderen Untersetzungen und höheren

Nennleistungen sind auf Wunsch lieferbar.

Тур	Α	В	С	Dj6	E	F	Mf7	R	Kg
C0,12	124	97	50	25	95	M8 x 14	116	10	6
C0,16	160	115	60	30	120	M10 x 20	150	12	12
C0,20	200	140	75	40	150	M12 x 25	190	13	22


welle	,	Wellennu	ut gemäß	3	Gewinde	bohrung
	DIN 688	85 NF 2	2 1 75 E	S 4236		
Ø Dj6	ah9	b	k-0.2	l1	m	12
25	8	7	28	45	M8	15
30	8	7	33	55	M8	15
40	12	8	43	70	M10	19

Codierungs-Beispiel

	С	16	С	1	
				Unterse	etzung: 1 oder 2
Größe: 12	- 16 - 20	-		Wellenz	zahl + Drehrichtung

Zulässige Radialbelastungen am Wellenende

				Antriebs	drehzah	I (U/min)				
Größe	1500	500	50	1500	500	50	1500	500	50	
	F1 (N)				F2 (N)			F3 (N)		
	Lastfaktor Kt = 1.55									
C12	300	650	1800	300	650	1800	750	1150	2350	
C16	500	1100	3000	500	1100	3000	1250	2000	3900	
C20	1000	1800	5000	1000	1800	5000	2500	3400	6500	
	Lastfaktor Kt = 2									
C12	600	850	2350	600	850	2350	800	1350	2600	
C16	950	1400	3800	950	1400	3800	1350	2350	4500	
C20	1900	2300	6400	1900	2300	6400	2700	4000	8500	

Kt = 1 für Direktkupplung

KEGELRÄDER

Nennleistungen Pn - Drehmomente an Hochgeschwindigkeitswelle (n1)

 P_n ist die Nennleistung, die für eine Lebensdauer von 6000 Stunden mit Servicefaktor Ka = 1 berechnet wird.

Тур	Drehmomente und Leistungen			ı	Drehza	ahlen	an Ho	chges	chwin	digkeit	swelle	n1 in	U/mir	ı		
		10	50	125	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000
		Untersetzung =				ng = 1	g = 1									
c. 12	Drehmoment - Kupplung - MdaNm	19.1	17.2	14.5	13.3	11.4	10.1	9.5	9.1	8.9	8.73	8.6	8	7.6	7.1	6.6
	Leistung - Pn - PnkW	0.2	0.9	1.9	3.5	6	8	10	12	14	16	18	19	20	20.5	21
c. 16	Drehmoment - Kupplung - MdaNm	38.2	30.5	26.7	22.9	20	18.4	17.2	15.6	15.2	13.3	11.9	11	10.3	9.55	
	Leistung - Pn - PnkW	0.4	1.6	3.5	6	10.5	14.5	18	20.5	24	24.5	25	26	27	27.5	
c. 20	Drehmoment - Kupplung - MdaNm	76.4	61.1	53.5	45.8	40	36.9	34.3	32	31.8	28	25.3	23	22.3		
	Leistung - Pn - PnkW	0.8	3.2	7	12	21	29	36	42	50	51.5	53	54.5	58.5		
								Unter	setzu	ng = 2						
c. 12	Drehmoment - Kupplung - MdaNm	9.5	5.7	5.3	4.9	4.7	4	3.8	3.6	3.5	3.2	3.1	2.9	2.8	2.7	2.7
	Leistung - Pn - PnkW	0.1	0.3	0.7	1.3	2.5	3.2	4	4.7	5.5	6	6.5	7	7.5	8	8.5
c. 16	Drehmoment - Kupplung - MdaNm	19.1	15.2	12.9	11.4	9.5	8.9	8.1	7.6	7.3	7	6.9	6.5	6.1	5.7	5.4
	Leistung - Pn - PnkW	0.2	8.0	1.7	3	5	7	8.5	10	11.5	13	14.5	15.5	16	16.5	17
c. 20	Drehmoment - Kupplung - MdaNm	38.2	28.6	26.7	22.9	19.1	17.8	17.1	16	15.6	15.2	14.3	14	13.7	12.6	11.9
	Leistung - Pn - PnkW	0.4	1.5	3.5	6	10	14	18	21	24.5	28	30	33	36	36.5	37.5

Auswahl

Pm = Pu x Ka x Ki x Kt

Pm: Korrigierte Abtriebsleistung (kW)Pu: Von der Maschine aufgenommene

Leistung (kW)

Ka: Servicefaktor

Ki: Lebensdauerfaktor

Kt: Radiallastfaktor

Untersetzung i = $\frac{n1}{n2}$

n1 = Drehzahl an

Hochgeschwindigkeitswelle in U/min

n2 = Drehzahl an

Niedergeschwindigkeitswelle in U/min

Das "würfelförmige" abgeschrägte Gehäuse wählen, damit:

Pn ≥ Pm

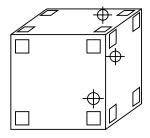
Pn = Nennleistung

Schmierung der Kegelräder

Spritzschmierung:

- Alle Typen
- Alle Einbaulagen
- Schmierung: empfohlenes Öl wird auf dem Gehäuse (Kegelradgehäuse) angegeben, Auslieferung ohne Öl

Тур	C 12	C 16	C 20
Menge in Litern	0.4	0.8	1.5


Servicefaktor Ka

Hauptantrieb	Nominales oder nicht häufiges Starten	Angetriebene Maschine Mittlere Stoßlast oder recht häufiges Starten	Hohe Stoßlast oder sehr häufiges Starten
Elektromotor Dampfturbine	1.00	1.25	1.50

Lebensdauerfaktor Ki

Die Konstruktionslebensdauer entspricht der Betriebsstunden mit normaler Abnutzung ohne Zerstörung.

Erforderliche Lebensdauer in Stunden						
100	1000	6000	10000	15000	20000	
0.6	8.0	1	1.05	1.2	1.35	

FÜLLENTLÜFTUNG:

Entlüftungsschraube an Oberseite oder mit Bogenstück an der senkrechten Fläche.

ABLASS:

auf der Seitefläche oder am Boden.

FÜLLSTAND:

(über Stopfen): immer an der Ecke unten rechts.

TELESKOPFEDERSCHUTZ

- Aus qualitativ hochwertigem gehärtetem Federstahl, um die Größe zu verringern
- Sehr gute Abdichtung zwischen den Spulen
- Auch lieferbar in Edelstahl

Di = Innendurchmesser Da = Außendurchmesser

DF1 = Außendurchmesser Zentrierflansch (Di - 2 mm)

DF2 = Innendurchmesser Flanschbuchse (Da +4 mm)

 L_{min} = min. Installationslänge L_{max} = max. Installationslänge

WICHTIG

Bei Bestellung angeben, ob vertikale oder horizontale Einbaulage gewünscht wird.

		Di	Da	L	L
Тур		±	±		
		1 mm	2 mm	max.	min.
	B	D 27			
SF	30/150/30	30	39	150	30
SF	30/250/30	30	44	250	30
SF	30/350/30	30	49	350	30
SF	30/450/40	30	53	450	40
SF	30/550/40	30	58	550	40
SF	30/650/50	30	55	650	50
SF	30/750/50	30	59	750	50
	B	D 40			
SF	40/150/30	40	51	150	30
SF	40/250/30	40	56	250	30
SF	40/350/30	40	60	350	30
SF	40/450/40	40	63	450	40
SF	40/550/40	40	68	550	40
SF	40/350/50	40	55	350	50
SF	40/450/50	40	58	450	50
SF	40/550/50	40	61	550	50
SF	40/650/50	40	65	650	50
SF	40/750/50	40	69	750	50
SF	40/450/60	40	55	450	60
SF	40/550/60	40	58	550	60
SF	40/650/60	40	62	650	60
SF	40/750/60	40	66	750	60
SF	40/900/60	40	70	900	60
SF	40/650/75	40	62	650	75
SF	40/750/75	40	66	750	75
SF	40/900/75	40	72	900	75
SF	40/1100/75	40	78	1100	75
SF	40/1300/75	40	84	1300	75
SF	40/1500/75	40	90	1500	75
SF	40/1000/100	40	66	1000	100
SF	40/1200/100	40	70	1200	100
	B	D 58			
SF	50/150/30	50	63	150	30
SF	50/250/30	50	68	250	30
SF	50/250/50	50	62	250	50
SF	50/350/50	50	66	350	50
SF	50/450/50	50	70	450	50
SF	50/550/50	50	73	550	50
SF	50/550/60	50	68	550	60
SF	50/650/60	50	72	650	60
SF	50/750/60	50	76	750	60
SF	50/750/75	50	78	750	75
SF	50/900/75	50	84	900	75
SF	50/1100/75	50	90	1100	75
SF	50/1100/100	50	75	1100	100
SF	50/1300/100	50	79	1300	100
SF	50/1500/100	50	86	1500	100
SF	50/1800/100	50	94	1800	100

		Di	Da	L	L
Тур		±	±		
			2 mm	max.	min.
		D 66			
SF	60/150/30	60	73	150	30
SF	60/250/30	60	78	250	30
SF	60/250/50	60	71	250	50
SF	60/350/50	60	78	350	50
SF	60/450/50	60	82	450	50
SF	60/550/60	60	81	550	60
SF	60/650/60	60	85	650	60
SF	60/750/60	60	89	750	60
SF	60/750/75	60	89	750	75
SF	60/900/75	60	95	900	75
SF	60/1100/75	60	102	1100	75
SF	60/1100/100	60	90	1100	100
SF	60/1300/100	60	94	1300	100
SF	60/1500/100	60	101	1500	100
SF	60/1800/100	60	109	1800	100
	В	D 86			
SF	75/150/30	75	92	150	30
SF	75/250/30	75	99	250	30
SF	75/250/50	75	89	250	50
SF	75/350/50	75	94	350	50
SF	75/450/50	75	101	450	50
SF	75/550/60	75	99	550	60
SF	75/650/60	75	103	650	60
SF	75/750/60	75	108	750	60
SF	75/650/75	75	99	650	75
SF	75/750/75	75	104	750	75
SF	75/900/75	75	111	900	75
SF	75/1100/100	75	108	1100	100
SF	75/1300/100	75	112	1300	100
SF	75/1500/100	75	120	1500	100
SF	75/1700/100	75	126	1700	100
SF	75/1500/120	75	115	1500	120
SF	75/1800/120	75	122	1800	120
SF	75/2000/120	75	127	2000	120
SF	75/2200/120	75	132	2200	120
SF	75/2000/150	75	135	2000	150
SF	75/2400/150	75	141	2400	150
SF	75/2800/150	75	145	2800	150
SF	75/2800/130	75 75	142	2800	180
SF	75/2000/180	75 75	148	3000	180
SF	75/3000/180	75 75	156	3250	180
SF	75/3250/180	-			
SF	75/3250/200	75 75	148 158	3250 3500	200 200
SF	13/3300/200	75	130	3300	200

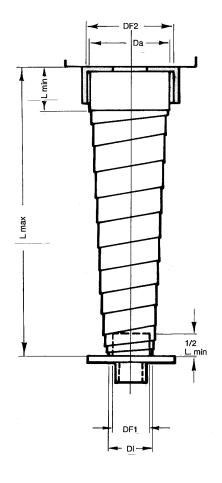


Abb. 51

		Di	Da	L	L
Тур		±	±		
		1 mm	2 mm	max.	min.
	BI	<u> 100</u>			
SF	110/250/60	110	131	250	60
SF	110/350/60	110	135	350	60
SF	110/450/60	110	139	450	60
SF	110/350/75	110	130	350	75
SF	110/450/75	110	135	450	75
SF	110/600/75	110	140	600	75
SF	110/650/100	110	129	650	100
SF	110/750/100	110	133	750	100
SF	110/900/100	110	138	900	100
SF	110/1100/120	110	139	1100	120
SF	110/1300/120	110	145	1300	120
SF	110/1500/150	110	155	1500	150
SF	110/1800/150	110	159	1800	150
SF	110/2000/150	110	165	2000	150
SF	110/2000/180	110	159	2000	180
SF	110/2200/180	110	165	2200	180
SF	110/2400/180	110	170	2400	180
SF	110/2400/200	110	162	2400	200
SF	110/2600/200	110	166	2600	200
SF	110/2800/200	110	172	2800	200

Andere Abmessungen auf Wunsch lieferbar.

SCHMIERUNG DER HUBGETRIEBE

Fetttyp

1. Bei Umgebungstemperatur -30 ° bis +30 °C

BP Energrease LS-EP2
Castrol Spheerol EPL2
Esso Beacon EP2
Gulf Gulflex MP
Mobil Mobilux EP2

Shell Alvania EP Grease 2 alt Retinax A

SKF Alfalub LGEP2 Texaco Mulfifak EP2

II. Bei Umgebungstemperatur -45 °C bis -30 °C Mobil Mobil SHC32

III. Bei Umgebungstemperatur +30 °C bis +60 °C Mobil Mobiltemp SHC100 Viton-Dichtringe werden empfohlen.

Schmierintervalle

Normalbelastung < 1 000 mm/Min Hubgeschwindigkeit: Alle 30 Betriebsstunden

Anstrengende Belastung > 1 000 mm/Min Hubgeschwindigkeit: Alle 10 Betriebsstunden

Fett alle 400 Betriebsstunden erneuern.

Hinweis: Bei Hubgetriebetyp BDL und BDKL muss die Hubspindel immer mit einem feinen Fettfilm geschmiert sein.

Montage und Wartungsanweisungen

- 1. Das Hubgetriebe darf nicht überlastet werden.
- Der Untergrund, auf dem die Hubgetriebe montiert werden, muss auf die Höchstlast ausgelegt und fest genug sein, um Schwingungen oder Drehen am Träger des Hubgetriebes zu vermeiden.
- 3. Während der Montage muss sichergestellt werden, dass die Hubgetriebe sorgfältig eingestellt werden, und dass die Verbindungswellen und Schneckenwellen exakt ausgerichtet sind. Die Hubspindel bzw. Spindelmutter muss sorgfältig ausgerichtet werden, um radiale Belastungen auf die Hubspindel zu vermeiden. Nachdem Hubgetriebe, Wellen, Getriebegehäuse usw. verbunden sind, muss es möglich sein, die Hauptantriebswelle von Hand zu drehen (bei Hubgetrieben ohne Last). Wenn keine Anzeichen auf Festlaufen oder Ausrichtungsabweichungen erkannt werden, ist das Hubsystem nun für den Betrieb bereit.
- 4. Die Hubgetriebe sollten eine längere Hublänge aufweisen, als tatsächlich erforderlich ist. Wenn die Gesamthublänge genutzt werden muss, ist Sorgfalt erforderlich. Es ist wichtig, dass die Hubspindeln nicht über die geschlossene Höhe (siehe Katalog) herausgedreht werden, sonst kann die Schnecke schwer beschädigt werden.

Fettmenge Hubgetriebegehäuse

Тур		Fettmenge
BD/BDL/BDKL	27	0.3 kg
BD/BDL/BDKL	40	0,5 kg
BD/BDL/BDKL	58	0,9 kg
BD/BDL/BDKL	66	1,2 kg
BD/BDL 86		1,4 kg
BD/BDL 100		2,5 kg
BD/BDL 125		5,2 kg
BD/BDL 200		15 kg
BDK 27		0,4 kg
BDK 40		0,7 kg
BDK 58		1,7 kg
BDK 66		2,0 kg

- Es muss verhindert werden, dass sich Staub und Sand in den Gewinden ansammelt. Wenn möglich, sollte die Hubspindel in die geschlossene Stellung eingeschraubt werden, wenn sie nicht in Betrieb ist.
- 6. Die maximale Abnutzung bei den Typen BD und BDL ist erreicht, wenn die Gewindestärke des Schneckenrads oder der Spindelmutter zur Hälfte abgenutzt ist. Schneckenrad und Spindelmutter müssen dann ersetzt werden. Bei eingängigen Trapezspindel beträgt die zulässige Abnutzung 1/4 der Steigung. Der Kunde sollte regelmäßig prüfen, dass die zulässige Abnutzung nicht überschritten ist.

PRODUKTSICHERHEIT

WICHTIG

Produktsicherheitsinformationen

Allgemeines - Die nachfolgenden Informationen dienen zur Gewährleistung der Sicherheit. Sie müssen allen Personen mitgeteilt werden, die mit der Auswahl der Leistungsübertragungsanlagen beauftragt sind, die für die Konstruktion der Maschinenanlagen, in die diese integriert werden, verantwortlich sind, und die für deren Installation, Benutzung und Wartung zuständig sind.

Bei richtiger Auswahl, Installation, Benutzung und Wartung ist der Betrieb unserer Produkte sicher. Wie bei allen Kraftübertragungseinheiten müssen zur Gewährleistung der Sicherheit die entsprechenden und nachfolgend aufgeführten Sicherheitsmaßnahmen ergriffen werden.

Potentielle Gefahren - Sie werden nicht unbedingt in der Reihenfolge ihrer Ernsthaftigkeit aufgeführt, da der Risikograd von den jeweiligen Umständen abhängt. Daher muss die komplette Liste in Betracht gezogen werden.

- 1) Brand/Explosion:
 - (a) In den Getriebenheiten werden Ölnebel und Öldämpfe erzeugt. Die Verwendung von offenem Feuer in der Nähe der Öffnungen des Getriebegehäuses ist ist wegen der Brand- bzw. Explosionsgefahr gefährlich.
 - (b) Bei einem Brand oder einer starken Überhitzung (über 300 °C) können sich bestimmte Stoffe wie z. B. Gummi, Kunststoffe usw. zersetzen und Rauch erzeugen. Die Aussetzung an diesen Rauch muss vermieden werden, und beim Umgang mit den Resten der verbrannten bzw. überhitzten Kunststoff-/Gummiwerkstoffe müssen Handschuhe getragen werden.
- 2) Schutzverkleidungen Drehende Wellen und Kupplungen müssen geschützt werden, damit kein Kontakt oder das Mitreißen von Kleidungsstücken möglich ist. Die Schutzverkleidungen müssen eine stabile Konstruktion aufweisen und sicher befestigt sein.
- 3) Lärm Hochgeschwindigkeitsgetriebe und Maschinen mit Getriebeantrieb können Schallpegel verursachen, die bei anhaltender Aussetzung zu Gehörschäden führen können. Unter solchen Umständen sollten die Mitarbeiter über einen Gehörschutz verfügen. Informationen erhalten Sie im entsprechenden Department of Employment Code of Practice (Leitfaden des Arbeitsministeriums) über die Verringerung der Aussetzung der Mitarbeiter unter Lärmquellen.
- 4) Heben Wo dies (hauptsächlich bei größeren Einheiten) der Fall ist, dürfen die Einheiten nur an den Hebestellen bzw. Ösen angehoben werden (die Anordnung der Hebepunkte wird in der Wartungsanleitung bzw. in der Layout-Zeichnung angegeben. Die Nichtbeachtung dieser Hebepunkte kann Verletzungen bzw. Beschädigungen am Produkt oder an Anlagen in der Umgebung verursachen. Einen Sicherheitsabstand zu der angehobenen Anlage einhalten.
- 5) Schmiermittel und Schmierung
 - (a) Anhaltender Kontakt mit Schmiermitteln kann Hautreizungen verursachen. Beim Umgang mit den Schmiermitteln müssen die Anweisungen des Herstellers beachtet werden.
 - (b) Vor der Inbetriebnahme muss der Schmierzustand der Anlage überprüft werden. Alle Anweisungen auf dem Schmierschild und in den Installations- und Wartungsunterlagen müssen gelesen und durchgeführt werden. Alle Warnaufkleber beachten! Eine Nichtbeachtung kann zu Schäden an der Mechanik führen und stellt im Extremfall eine Gefahr für die Mitarbeiter dar.
- 6) Elektrische Geräte Die Gefahrenhinweise an den elektrischen Geräten müssen beachtet werden. Vor Arbeiten am Getriebe und angeschlossenen Geräten muss die Stromversorgung unterbrochen werden, damit die Anlage nicht ungewollt anlaufen kann.
- 7) Installation, Wartung und Lagerung
 - (a) Wenn diese Anlage vor der Installation oder der Inbetriebnahme l\u00e4nger als 6 Monate gelagert werden soll, m\u00fcssen wir \u00fcber die erforderlichen Ma\u00dfnahmen f\u00fcr die Einlagerung befragt werden. Au\u00dfer bei besonderen Vereinbarungen m\u00fcssen die Ger\u00e4te zum Schutz vor Besch\u00e4digungen in einem Geb\u00e4ude gelagert werden, wo sie vor extremen Temperaturen und Feuchtigkeit gesch\u00fctzt sind.
 - Drehende Bauteile wie z. B. Zahnräder und Wellen müssen einmal im Monat gedreht werden (um ein Festlaufen der Lager zu vermeiden).
 - (b) Externe Getriebeanbauteile k\u00f6nnen bei der Lieferung mit einem Schutz in Form eines "Wachsbands" oder Wachsfolie versehen sein. Beim Abnehmen dieser Schutz\u00fcberz\u00fcge m\u00fcssen Handschuhe getragen werden. Das Wachsband kann von Hand und die Wachsfolie mit Spiritus als L\u00f6sungsmittel entfernt werden.
 - Schutzbeschichtungen an getriebeinternen Bauteilen müssen vor dem Betrieb nicht entfernt werden.
 - (c) Die Installation muss gemäß den Anweisungen des Herstellers und durch entsprechend qualifiziertes Personal durchgeführt werden.
 - (d) Vor Arbeiten am Getriebe und an angeschlossenen Anlagen darf keine Last mehr im System vorhanden sein, damit ungewollte Bewegungen der Maschinen vermieden werden, und die Stromversorgung muss unterbrochen sein. Wenn erforderlich, muss mit mechanischen Mitteln gewährleistet werden, dass sich die Maschine nicht bewegen bzw. drehen kann. Nach Abschluss der Arbeiten nicht vergessen, diese Elemente wieder zu entfernen.
 - (e) Die Getriebe müssen im Betrieb richtig gewartet werden. Bei Reparatur- und Wartungsarbeiten müssen korrekte Werkzeuge und unsere zugelassenen Ersatzteile verwendet werden. Vor dem Zerlegen und vor Wartungsarbeiten die Anweisungen in der Wartungsanleitung beachten.
- 8) Heiße Flächen und Schmiermittel
 - (a) Im Betrieb können die Getriebe so heiß werden, dass sie Hautverbrennungen verursachen können. Eine ungewollte Berührung muss vermieden werden.
 - (b) Nach längerem Betrieb können das Schmiermittel und die Schmieranlage an sich so heiß werden, dass sie Hautverbrennungen verursachen können. Vor der Durchführung von Wartungs- bzw. Einstellungsarbeiten muss die Anlage abkühlen.
- 9) Auswahl und Konstruktion
 - (a) Wenn ein Getriebe über eine Rücklaufsperre verfügt, müssen zusätzliche Vorrichtungen vorgesehen werden, wenn eine Ausfall der Rücklaufsperre eine Gefahr für die Personen darstellen und Schäden verursachen kann.
 - (b) Der Antrieb und die angetriebenen Elemente müssen so gewählt werden, dass der Betrieb der kompletten Maschinenanlage zuverlässig erfolgen kann, und dass kritische Drehzahlen, Torsionsschwingungen usw. vermieden werden.
 - (c) Die Anlage darf in keiner Umgebung oder mit Drehzahlen, Leistungswerten, Drehmomenten oder mit externen Lasten betrieben werden, die die Auslegungswerte überschreiten.
 - (d) Aufgrund der kontinuierlichen Konstruktionsverbesserungen dürfen die Angaben in diesem Katalog nicht in allen Einzelheiten als bindend betrachtet werden. Die Zeichnungen und Werteangaben unterliegen Änderungen ohne vorherige Ankündigung.

Die obige Anleitung beruht auf dem aktuellen Kenntnisstand und unserer besten Beurteilung der potentiellen Gefahren im Betrieb der Getriebe. Wenn Sie weitere oder klärende Informationen benötigen, wenden Sie sich bitte an unsere Anwendungsingenieure.

ANMERKUNGEN

